期刊文献+

夹竹桃麻素对高草酸尿症大鼠肾脏氧化应激损伤的保护作用 被引量:2

Protective effect of apocynin on renal oxidative injury in a rat model of hyperoxaluria
原文传递
导出
摘要 目的观察NADPH氧化酶特异抑制剂夹竹桃麻素(apocynin)对高草酸尿症大鼠肾脏氧化应激(OS)损伤的保护作用。方法自由饮用含有0.8%乙二醇的水4周建立高草酸尿症sD大鼠模型。大鼠按随机数字表法分为4个组:空白组、高草酸尿症组、apocynin干预组、apocynin对照组。后两组给予apocynin(0.2g·kg^-1·d^-1)灌胃,对照组给予正常饮水。4周后检测大鼠肾脏OS指标(尿H2O2和8-异前列腺素),以及Ccr及肾脏/体质量比值。免疫组化观察NADPH氧化酶亚基p47phox在肾脏中的表达位置。RT—PCR和免疫印迹法分别检测肾组织NADPH氧化酶亚基p47phox、gp91phox、Nox-1 mRNA以及p47phox蛋白的表达水平。结果p47phox在各组肾脏中均有广泛的表达,包括肾皮质区、内髓区、外髓区等。与空白组比较,高草酸尿症组大鼠尿H2O2和8-异前列腺素水平显著升高,Ccr降低,肾脏/体质量比值增高(均P〈0.05);肾脏p47phox、gp91phox和Nox-1的mRNA表达均显著增加(均P〈0.05),p47phox蛋白表达也增多(P〈0.01)。apocynin干预治疗可抑制肾脏p47phox、Nox-1 mRNA及p47phox蛋白的表达,但gp91phox mRNA表达未明显减少,而大鼠尿H2O2和8-异前列腺素水平下降,Ccr增加,肾脏/体质量比值减少,但仍高于对照组水平。结论NADPH氧化酶是高草酸尿症诱导大鼠肾脏OS损伤过程中活性氧形成的来源之一。使用apocynin抑制NADPH氧化酶活性可部分减轻肾脏的OS损伤程度,保护肾功能。 Objective To investigate the protective effect of apocynin against renal oxidative injury in a rat model of hyperoxaluria. Methods Animal model of hyperoxaluria was established by administration of 0.8% ethylene glycol (EG) to adult male Sprague-Dawley rats in drinking water for 4 weeks. Simultaneous treatment with apocynin (0.2 g·kg^-1·d^-1) by intragastric administration were performed in the rats. Markers of oxidative stress(OS) state, urinary H2O2 and 8- (so-prostaglandin IP), and renal injury were assessed at the end of the study. Expression and localization of NADPH oxidase subunits (p47phox, gp91phox, Nox-1) in kidneys were examined by immunohistochemistry, real-time PCR and Western blot, respectively. Results p47phox expressed widely in kidneys of model rats, including renal cortex, inner medulla and outer medulla. Compared with the control, OS and renal injury occurred in rats receiving EG, in accordance with the up-regulated expression of NADPH oxidase subunits in kidneys. Treatment with apocynin significantly reduced the excretion of urinary H2O2 and 8-IP, improved the ereatinine clearance and the kidney/body weight, with the down-regulated expression of NADPH oxidase subunits (except gp91phox mRNA) in kidneys, but the levels of OS markers in apocynin-treated rats were still higher than thoset of normal controls. Conclusions The increased expression of NADPH oxidase subunits is suggested to be partially accounted for the development of renal OS in this rat model of hyperoxaluria. Apocynin treatment is effective for renal protection in this model.
出处 《中华肾脏病杂志》 CAS CSCD 北大核心 2009年第4期313-317,共5页 Chinese Journal of Nephrology
基金 广西科学研究与技术开发计划课题(桂科攻0816004-4) 研究生创新计划项目(002D31)
关键词 高草酸尿症 氧化性应激 NADPH氧化酶 夹竹桃麻素 肾损伤 Hyperoxaluria Oxidative stress NADPH oxidase Apocynin Renal injury
  • 相关文献

参考文献13

  • 1Khan SR. Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res, 2005, 33: 349-357.
  • 2Thamilselvan S, Byer KJ, Hackett RL, et al. Free scavengers,catalase and superoxide dismutase radical provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol, 2000, 164: 224-229.
  • 3Umekawa T, Byer K, Uemura H, et al. Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushinte crystal-induced upregulation of MCP-1 in NRK52E ceils. Nephrol Dial Transplant, 2005, 20: 870-878.
  • 4Ushio-Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res, 2006, 71: 226-235.
  • 5Khan SR. Experimental CaOx nephralithiasis and the formation of human urinary stones. Scann Mierose, 1995, 9: 89-100.
  • 6Li JM, Shah AM. ROS ceneration by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol, 2003, 14: S221-S226.
  • 7Han CH, Lee MH. Expression and characterization of the flavoprotein domain of gp91phox. J Vet Sci, 2000, 1: 19-26.
  • 8Sub YA, Arnold RS, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase Moxl. Nature, 1999, 401: 79-82.
  • 9Geiszt M, Kopp JB, Varnai P, et al. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci, 2000, 9: 8010-8014.
  • 10Chabrashvili T, Tojo A, Onozato ML, et al. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension, 2002, 39: 269-274.

二级参考文献17

  • 1el Benna J, Faust LP, Babior BM. The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem, 1994,269:23431-23436.
  • 2Babior BM. NADPH oxidase: an update. Blood, 1999, 93:1464-1476.
  • 3Touyz RM, Chen X, Tabet F, et al. Expression of a functionally active gp91phox-containing neutrophil-type NADPH oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin Ⅱ. Circ Res, 2002, 90:1205-1213.
  • 4Privratsky JR, Wold LE, Sowers JR, et al. AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase.Hypertension, 2003,42:206-212.
  • 5Shaw S, Wang X, Redd H, et al. High glucose augments the angiotensin Ⅱ-induced activation of JAK2 in vascular smooth muscle cells via the polyol pathway. J Biol Chem, 2003,278:30634-30641.
  • 6Cotter MA, Cameron NE. Effect of the NADPH oxidase inhibitor,apocynin,on peripheral nerve perfusion and function in diabetic rats. Life Sci, 2003, 73:1813-1824.
  • 7Jiang Z, Seo JY, Ha H, et al. Reactive oxygen species mediate TGF-beta 1-induced plasminogen activator inhibitor-1 upregulation in mesangial cells. Biochem Biophys Res Commun,2003, 309:961-966.
  • 8Wassmann S, Laufs U, Baumer AT, et al. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension, 2001, 37: 1450-1457.
  • 9Lee GT, Ha H, Jung M, et al. Delayed treatment with lithospermate B attenuates experimental diabetic renal injury.J Am Soc Nephrol, 2003,14:709-720.
  • 10Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol,2003,14:1358-1373.

共引文献10

同被引文献31

  • 1陈英剑,涂晓文,尹秋霞,胡成进.牛磺酸对糖尿病大鼠肾脏氧化和抗氧化系统的影响[J].放射免疫学杂志,2004,17(4):245-247. 被引量:8
  • 2Johri N, Cooper B, Robertson W, et al. An update and practical guide to renal stone management. Nephron Clin Pract, 2010, 116 (3) :c159- c171.
  • 3Lieske J C, Toback F G. Interaction of urinary crystals with renal epithelial cells in the pathogenesis of nephrolithiasis. Semin Neph- ro1,1996,16(5) :458 -473.
  • 4Schepera M S, van Ballegooijen E S, Banglna C H, et al. Crystals cause acute necrotic cell death in renal proximal tubule cells, but not in collecting tubule ceils. Kidney Int, 2005,68 ( 4 ) : 1543 -1553.
  • 5Meimaridou E, Lobos E, Hothersall J S. Renal oxidative vulnera- bility due to changes in mitochondrial - glutathione and energy ho- meostasis in a rat model of calcium oxalate urolithiasis. Am J Physi- ol Renal Physiol,2006,291 (4) :F731 - F740.
  • 6Park J, Lee J, Choi C. Mitochondrial network determines intracel- lular ROS dynamics and sensitivity to oxidative stress through switc- hing inter - mitochondrial messengers. PLoS One, 2011,6 ( 8 ) : e23211.
  • 7Zuo J, Khan A, Glenton P A, et al. Effect of NADPH oxidase in- hibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy- L- proline -induced hyper- oxaluria in the male Sprague - Dawley rats. Nephrol Dial Trans- plant,2011,26(6) :1785 - 1796.
  • 8Thamilselvan V, Menon M, Thamilselvan S. Oxalate - induced ac- tivation of PKC - alpha and - delta regulates NADPH oxidase - mediated oxidative injury in renal tubular epithelial cells. Am J Physiol Renal Physio1,2009,297 (5) : F1399 - F1410.
  • 9Hanna I R, Taniyama Y, Szocs K, et al. NAD(P)H oxidase - derived reactive oxygen species as mediators of angiotensin II sig- naling. Antioxid Redox Signal,2002,4 ( 6 ) : 899 - 914.
  • 10Meschi T, Nouvenne A, Borghi L. Lifestyle recommendations to reduce the risk of kidney stones. Urol Clin North Am, 2011,38 (3) :313 -320.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部