期刊文献+

Bailey’s方法在生境选择研究中的应用 被引量:15

A Method for Analysis of Habitat Selection Data:Bailey’s Interval
下载PDF
导出
摘要 使用已经发表的4组生境选择数据计算Bonferroni和Bailey’s置信区间,以比较分析Bailey's方法在研究"利用-可利用型"生境选择数据时的优势。用Bailey’s方法对4组数据中的两组做出了与Bonferroni方法不同的统计推断,特别是当Bonferroni方法对其中的一组数据无法对动物是否具有生境选择性做出判断时,而Bailey’s方法却发现了差异。如同Cherry(1996)指出的,Bonferroni方法是基于拟合优度卡方检验的,要求大样本的独立数据,当出现小样本时会因为连续性和一致性缺失而做出错误推断。Bailey’s方法因为使用了连续性校正因子克服了这一缺陷,而且使用时无须进行拟合优度卡方检验,是一种简便可靠的生境选择数据分析方法。建议在推荐Bailey’s方法的同时,应适当增大样本量、控制同时分析的生境类型数量,以控制分析时I类和II类的错误率。 This paper calculated the Bonferroni interval and Bailey's interval of four sets published data in order to show comparative dominance of Bailey's method in the study of "use-available" model on habitat selection of animals. Bailey's method deduced differently on two sets aforesaid data compared to Bonferroni method, one dataset of which couldn't show whether the animals made habitat selection or not in Bonferroni method's judgment. Nevertheless Bailey's method detected the variance, Cherry (1996) pointed out that the Bonferroni method of interval construction is based on a large sample approximation for a confidence interval for a single binomial proportion with the overall confidence level controlled with the Bonferroni inequality. This method will lead to a logically wrong deduction because of lacking coherence and consonance for small samples. As an alternative, Bailey's method calculates correctly with the use of a continuous correcting factor to overcome the above-mentioned limitation, furthermore a Chi-square goodness-of-fit test is undesired. We recommended Bailey's method in analyzing data of habitat selection. We also suggested that researchers should properly increase the sample size meanwhile decrease the number of type of habitats to control Type Ⅰ and Type Ⅱ errors.
出处 《Zoological Research》 CAS CSCD 北大核心 2009年第2期215-220,共6页 动物学研究(英文)
基金 国家自然科学基金(30470235) 内蒙古自治区高等学校科学研究项目(NJzy08164)
关键词 生境选择 统计推断 Bonferroni置信区间 Bailey's置信区间 Habitat selection Statistical inference Bonferroni interval Bailey's interval
  • 相关文献

参考文献32

  • 1Alldredge JR, Ratti JT. 1986. Comparison of some statistical techniques for analysis of resource selection [J]. J WildlManage, 50(1): 157-165.
  • 2Anderson DR, Burnham KP, Thompson WL. 2000. Null hypothesis testing: Problems, prevalence, and an alternative [J]. J Wildl Manage, 64(4): 912-923.
  • 3APA. 2001. Publication Anual of the American Psychological Association [M]. Washington, DC: Aamerican Psychological Association.
  • 4Bailey B JR. 1980. Large sample simultaneous confidence intervals for the multinomial probabilities based on transformation of the cell frequencies [J]. Technometrics, 22: 583-589.
  • 5Byers CR, Steinhorst RK, Krausman PR. 1984. Clarification of a technique for analysis of utilization-availability data [J]. J Wildl Manage, 48(3): 1050-1053.
  • 6Chase GR. 1972. On the Chi-square test when the parameters are estimated independently of the sample [J]. JAm Statist Assoc, 67(339): 609-611.
  • 7Cherry S. 1996. A comparison of confidence interval methods for habitat use-availability studies [J]. J Wildl Manage, 60(3): 653-658.
  • 8Cherry S. 1998. Statistical tests in publications of The Wildlife Society [J]. Wildl Soc Bull, 26(4): 947-953.
  • 9Cohen J. 1994. The earth is round (P<0.05) [J]. Am Psychol, 49(12): 997-1003.
  • 10Colegrave N, Ruxton GD. 2003. Confidence intervals are a more useful complement to nonsignificant tests than are power calculations [J]. Behav Ecol, 14(3): 446-447.

二级参考文献61

共引文献79

同被引文献159

引证文献15

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部