期刊文献+

基于用户信誉值防御DDoS攻击的协同模型 被引量:9

Model of coorperation defense DDoS attack based on client reputation
下载PDF
导出
摘要 提出了一种基于用户信誉值防御DDoS攻击协同(CDDACR,cooperation defense DDoS attack based on client reputation)模型来检测和防御DDoS攻击。该模型在逻辑上由2个检测代理构成:路由器端的RDA(router detection agent)和服务器端的SDA(server detection agent)。RDA对用户数据流进行粗粒度检测,旨在过滤具有明显DDoS攻击特征的恶意数据流;SDA对用户数据流进行细粒度检测,检测并过滤恶意的狡猾攻击和低流量攻击,RDA和SDA协同工作来实时监测网络状况。实验结果表明,CDDACR模型能实时地识别和防御DDoS攻击,并且在异常发生时有效地阻止服务器被攻击的可能性。 The CDDACR (cooperation defense DDoS attack based on client reputation) model was presented to detect and defend the DDoS attack. Two detection agents made up of the CDDACR model logically: the RDA which set up on the router and the SDA which set up on the server. RDA coarse-grained detected the traffic to filter out the obvious unau- thorized clients' traffic; SDA fine-grained detected the client's traffic to identity the cunning attack and low-flow attack from the communication. Therefore, RDA and SDA together detected the client's network status in realtime. The experimental results show the CDDACR model can detect and defend the DDoS attack in realtime, and reduce the probability of server be attacked when the network is on the abnormity.
出处 《通信学报》 EI CSCD 北大核心 2009年第3期12-20,共9页 Journal on Communications
基金 国家自然科学基金资助项目(60873203) 河北省自然科学基金资助项目(F2008000646) 河北省教育厅自然科学基金重点项目(ZH2006006)~~
关键词 DDOS攻击 边界路由器 信誉值 数据融合 过滤 DDoS attack boundary-route reputation data fusion filter
  • 相关文献

参考文献18

  • 1MIRKOVIC JELENA .Attacking DDoS at the source[A]. Proceedings of the 10th IEEE International Conference on Network Protocols [C]. Paris, France, 2002.366-369
  • 2FERGUSON P, SENIE D. Network Ingress Filtering: Defeating Denial of Service Attacks which Employ IP Source Address Spoofing[R] Internet Best Current Practice, RFC 2827, May 2000.
  • 3WALFISH M, VUTUKURU M. DDoS defense by offense [A], SIGCOM'06[C]. 2006.1635-1639.
  • 4李德全,苏璞睿,魏东梅,冯登国.基于路由器编码的自适应包标记(英文)[J].软件学报,2007,18(10):2652-2661. 被引量:6
  • 5PENG T, LECKIE R, RAMAMOHANARAO T. Survey of network-based defense mechanisms countering the DoS and DDoS problems[J]. ACM Computing Surveys, 2007,39(1):321-342.
  • 6曹晓梅,韩志杰,陈贵海.基于流量预测的传感器网络拒绝服务攻击检测方案[J].计算机学报,2007,30(10):1798-1805. 被引量:33
  • 7JIN C H, WANG K SHIN. Hop-count filtering: an effective defense against spoofed DDoS traffic[A]. Proceedings of the 10th ACM Conference on Computer and Communications Security[C]. Washington, D C, USA, 2003.126-137
  • 8TUPAKULA U, VARADHARAJAN V. Analysis of Trace-Back Technique[R]. 2006.
  • 9ALLMAN M, BLANTON E, PAXSON V. An architecture for developing behavioral history[A]. Proceedings of SRUTI USENIX Association[C]. 2005.45-51.
  • 10WEI S J, MIRKOVIC J. Building reputations for internet clients[J]. Published in Electronic Notes in Theoretical Computer Science, 2006.66-78.

二级参考文献41

共引文献109

同被引文献77

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部