期刊文献+

非等温广义牛顿流体的无网格模拟 被引量:1

RPIM Computation of Non-Isothermal Generalized Newtonian Flows
下载PDF
导出
摘要 基于原始变量法,将RPIM推广到非等温广义牛顿流动问题的求解。为了减少未知量的个数,压力和速度采用罚函数方法耦合;同时采用积分降阶技术以保证获得满意的数值解。数值实验结果表明,采用罚函数法处理速度和压力在无网格方法中同样适用,且RPIM用于非等温广义牛顿流动问题的求解时具有易施加本质边界条件、计算精度高和收敛性较快的优点。 Based on the description of primitive variables,the RPIM method is adopted to simulate the two-dimensional non-isothermal generalized Newtonian flows.The penalty function method is presented to decrease the number of unknowns.Moreover,the penalty terms in the weak form are calculated by reduced integration technique to achieve the satisfactory numerical result.Several presented numerical examples indicate that the penalty function method is valid for the coupling of velocity and pressure in meshless method,and the RPIM is applicable for non-isothermal generalized Newtonian flow with high accuracy and quick convergence.
机构地区 西北工业大学
出处 《应用力学学报》 CAS CSCD 北大核心 2009年第1期136-140,共5页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金重大项目(10590353) 陕西省自然科学基金(2005A16)
关键词 非等温流动 广义牛顿流体 罚函数法 无网格方法 non-isothermal flow,generalized flow,penalty function method,meshless/meshfree methods
  • 相关文献

参考文献7

  • 1Liu G R, Gu Y T. An introduction to meshfree methods and their programming[M]. Dordrecht: Springer, Z005.
  • 2赵美玲,聂玉峰,袁占斌.无网格局部Petrov-Galerkin方法中本质边界条件的处理[J].应用力学学报,2006,23(3):493-495. 被引量:3
  • 3Wu Y L, Liu G R. A meshfree formulation of local radial point interpolation method(LRPIM) for incompressible flow simulation[J]. Computational Mechanics, 2003, 30: 355-365.
  • 4Tran-Canh D, Tran-Cong T. BEN-NN computation of generalized Newtonian flows[J]. Engineering Analysis with Boundary Elements, 2002, 26: 15-28.
  • 5Nassehi Vahid. Practical aspects of finite element modeling of polymer processing[M]. John Wiley & Sons, Ltd, 2002.
  • 6Donea J, Huerta A. Finite Element Methods for Flow Problems[M]. Chiehester: Wiley, 2003.
  • 7张小华,欧阳洁.线性定常对流占优对流扩散问题的无网格解法[J].力学季刊,2006,27(2):220-226. 被引量:9

二级参考文献24

  • 1王龙甫.弹性理论[M].北京:北京科学教育出版社,1979.59.
  • 2Donea J, Huerta A. Finite Element Methods for Flow Problems[M]. Chichester:Wiley, 2003
  • 3Codina R. Comparison of some finite element methods for solving the diffusion-convection-reaction equation [J]. Comput Methods Appl Mech Engrg, 1998,156:185 - 210.
  • 4Eduardo G D, Gustavo B A. A new stabilizsed finite element formulation for scalar convection-diffusion problems:The streamline and approximate upwind/Petrov-Galerkin method[J]. Comput Methods Appl Mech Engrg, 2004 ,192 : 3379 - 3396.
  • 5Monaghan J J. An introduction to SPH[J]. Comput Phys Comm, 1988,48:89 - 96.
  • 6Stephen J V. The application of smoothed particle hydrodynamics to problem in fluid mechanics[D]. Ph D thesis, Carmegie Mellon University, 2000.
  • 7Nayroles B, Touzot G, Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements[J]. Comput Mech,1992,10:307-318.
  • 8Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. Int J Num Meth Engrg, 1994,37:229 - 256.
  • 9Belytschko T, Krongauz Y, Organ D. Fleming M, Krysl P. Meshless method: An overview and recent developments[J]. Comput Methods Appl Mech Engrg, 1996,139:3-47.
  • 10Onate E, Idelsohn S, Zienkiewica O C. A finite point method in computational mechanics: Application to convections to transport and fluid flow[J]. Int J Num Meth Engrg, 1996,39:3839 - 3866.

共引文献10

同被引文献34

  • 1焦利芳,李凤臣,苏文涛,杨治金,魏进家,宇波,王屹.表面活性剂减阻剂在集中供热系统中的应用试验研究[J].节能技术,2008,26(3):195-201. 被引量:27
  • 2Liberatore M W, Nettesheim F, Vasquez P A, et al. Microstructure and shear rheology of entangled wormlike micelles in solution [ J ]. Journal of Rheology, 2009,53 (2) : 441-458.
  • 3Arhuoma M, Dong M Z, Yang D Y, et al. Determination of water-in-oil emulsion viscosity in porous media [ J ]. Industrial & Engineering Chemistry Research, 2009, 48 (15) :7092-7102.
  • 4张成伟,魏进家,宇波,等.一种表面活性剂溶液流变性的影响因素[c].吉林:中国工程热物理学会多相流学术会议,2009.
  • 5Xu J Y, Wu Y X, Li H, et al. Study of drag reduction by gas injection for power-law fluid flow in horizontal stratified and slug flow regimes [ J ]. Chemical Engineering Journal,2009,147 (2/3) :235-244.
  • 6Eisa Al-Matroushi, Ali Borhan. Coalescence of drops and bubbles rising through a non-Newtonian fluid in a tube [ J ]. Interdisciplinary Transport Phenomena: Ann N Y Acad Sci,2009,1161:225-233.
  • 7Diego Gomez-Diaz, Jose M Navaza, L C Quintaus Riveiro, et al. Gas absorption in bubble column using a non-New-tonian liquid phase [ J ]. Chemical Engineering Journal, 2009,146( 1 ) :16-21.
  • 8马倩.非牛顿流体在环管中流动与换热特性的数值研究[D].南京:南京理工大学,2008.
  • 9Firouzi M, Hashemabadi S H. Extract solution of two phase stratified flow through the pipes for non-Newtonian Herschel-Bulkley fluids [ J ]. International Communications in Heat and Mass Transfer,2009,36 (7) :768-775.
  • 10殷谷良.关于非牛顿流体衰减性的一个注记.数学季刊,2009,24(1):69-74.

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部