摘要
基于原始变量法,将RPIM推广到非等温广义牛顿流动问题的求解。为了减少未知量的个数,压力和速度采用罚函数方法耦合;同时采用积分降阶技术以保证获得满意的数值解。数值实验结果表明,采用罚函数法处理速度和压力在无网格方法中同样适用,且RPIM用于非等温广义牛顿流动问题的求解时具有易施加本质边界条件、计算精度高和收敛性较快的优点。
Based on the description of primitive variables,the RPIM method is adopted to simulate the two-dimensional non-isothermal generalized Newtonian flows.The penalty function method is presented to decrease the number of unknowns.Moreover,the penalty terms in the weak form are calculated by reduced integration technique to achieve the satisfactory numerical result.Several presented numerical examples indicate that the penalty function method is valid for the coupling of velocity and pressure in meshless method,and the RPIM is applicable for non-isothermal generalized Newtonian flow with high accuracy and quick convergence.
出处
《应用力学学报》
CAS
CSCD
北大核心
2009年第1期136-140,共5页
Chinese Journal of Applied Mechanics
基金
国家自然科学基金重大项目(10590353)
陕西省自然科学基金(2005A16)
关键词
非等温流动
广义牛顿流体
罚函数法
无网格方法
non-isothermal flow,generalized flow,penalty function method,meshless/meshfree methods