摘要
An effective adsorbent for arsenic removal was synthesized by hydrothermal treatment of waste glass powder (GP), followed by loading Fe(Ⅲ) oxyhydroxide onto the surface of waste glass powder. The =Si-O-H group was formed on the surface of GP and the specific surface area of GP powder was slightly increased after hydrothermal treatment. FeOOH was loaded onto the surface of hydrothermally treated waste glass powder (HGP) by the hydrolysis of FeC13. The formation conditions of FeOOH were also investigated. The ability of this new adsorbent for arsenic (As(V)) removal was evaluated. The results indicated that the highest removal efficiency was about 97% for 1 mg/L As(V) solution at pH 6 and keeping time 2 h.
An effective adsorbent for arsenic removal was synthesized by hydrothermal treatment of waste glass powder (GP), followed by loading Fe(Ⅲ) oxyhydroxide onto the surface of waste glass powder. The =Si-O-H group was formed on the surface of GP and the specific surface area of GP powder was slightly increased after hydrothermal treatment. FeOOH was loaded onto the surface of hydrothermally treated waste glass powder (HGP) by the hydrolysis of FeC13. The formation conditions of FeOOH were also investigated. The ability of this new adsorbent for arsenic (As(V)) removal was evaluated. The results indicated that the highest removal efficiency was about 97% for 1 mg/L As(V) solution at pH 6 and keeping time 2 h.
基金
supported by the National Science and Technology Pillar Program in the Eleventh Five-Year Plan Period (No. 2006BAF02A28)
the Science Research Fund of ShaanXi University of Science and Technology(No. ZX07-14)