期刊文献+

水溶液中几种芳香族氨基酸π-π自堆叠作用 被引量:1

Aromatic π-π Self-Stacking of Some Aromatic Amino Acids in Aqueous Solutions
下载PDF
导出
摘要 利用精密的流动混合微量热法测定了298.15K时D/L-色氨酸、L-色氨酸、L-组氨酸和L-苯丙氨酸四种天然芳香族氨基酸水溶液的稀释焓,根据所建立的拟等步自堆叠作用的化学模型对实验数据进行了处理,计算得到模型参数KΔHm.该化学作用参数与McMillan-Mayer理论模型中的焓对作用系数具有高度一致性,即hxx=KΔHm.结合文献报道的结果,认为芳核π-π自堆叠作用在本质上是一种特殊的疏水-疏水作用,一般表现为吸热效应;取代基空间位阻、芳核以外部分的静电。 Dilution enthalpies of some aromatic amino acids such as D/L-α-tryptophan,L-α-tryptophan,L-α-tyrosine and L-α-phenylalanine in aqueous solutions at 298.15 K were determined by sensitive mixing-flow microcalorimetry. A chemical interaction model for quasi-isodemic self-stacking was proposed and used to process the calorimetric data from which the model parameter KΔHm was calculated. The chemical interaction parameter (KΔHm) agrees well with and provides good insights into the pairwise enthalpic interaction coefficient (hxx) in the McMillan-Mayer approach for the existence of the equation KΔHm=hxx. Combined with results from literature we considered that aromatic π -π self-stacking is essentially a kind of special hydrophobic interaction manifesting commonly as an endothermic effect. Noteworthy effects arising from substituent hindrance,electrostatic interaction,hydrogen bonding and chiral recognition which are directed away from the aromatic core exert on aromatic π-π self-stacking. In nature,the composite parameter KΔHm describes a complex effect between the equilibrium and an enthalpic change of aromatic π-π self-stacking.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2009年第4期729-734,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20673077) 胶体与界面化学教育部重点实验室(山东大学)开放课题(200506)资助项目
关键词 芳香族氨基酸 π-π自堆叠 稀释焓 微量热法 化学作用模型 Aromatic amino acid π-π self-stacking Dilution enthalpy Microcalorimetry Chemical interaction model
  • 相关文献

参考文献27

  • 1Tsuzuki, S. Structure & bonding, intermolecular forces and clusters I. Berlin/Heidelberg: Springer, 2005: 115, 149-193.
  • 2Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem. Int. Ed., 2003, 42(11): 1210.
  • 3Dougherty, D. A. J. Nutr., 2007, 137(6): 1504S.
  • 4Xue, Y.; Davis, A.V.; Balakrishnan, G.; Stasser, J. P.; Staehlin, B. M.; Focia, P.; Spiro, T. G.; Penner-Hahn, J. E.; O'Halloran, T. V. Nature Chem. Biol., 2008, 4(2): 107.
  • 5Chelli, R.; Gervasio, F. L.; Procacci, P.; Schettino, V. J. Am. Chem. Soc., 2002, 124(21): 6133.
  • 6McGaughey, G. B.; Gagne, M.; Rappe, A. K. J. Biol. Chem., 1998, 273(25): 15458.
  • 7Hunter, C. A.; Singh, J.; Thornton, J. M. J. Mol. Biol., 1991, 218 (4): 837.
  • 8Burley, S. K.; Petsko, G. A. Science, 1985, 229(4708): 23.
  • 9Dilabio, G. A.; Johnson, E. R. J. Am. Chem. Soc., 2007, 129(19): 6199.
  • 10Waters, M. L. Current Opinion in Chemical Biology, 2002, 6(6): 736.

二级参考文献26

  • 1Yu,L.; Hu,X.G.; Lin,R.S.; Xu,G.Y.J.Therm.Anal.Cal.,2004,76:443
  • 2Yu,L.; Yuan,S.L.; Hu,X.G.; Lin,R.S.Chem.Eng.Sci.,2006,61:794
  • 3Kozak,J.J.; Knight,W.S.; Kauzmann,W.J.Chem.Phys.,1968,48:675
  • 4Frank,H.S.; Evans,M.W.J.Chem.Phys.,1945,13:507
  • 5King,E.J.J.Phys.Chem.,1969,73:1220
  • 6Zana,R.J.Phys.Chem.,1977,81:1817
  • 7Edward,J.T.; Farrell,P.G.; Job,J.L.J.Am.Chem.Soc.,1974,96:902
  • 8Maeda,Y.; Tsukida,N.; Kitano,H.; Terada,T.; Yamanaka,J.J.Phys.Chem.,1993,97:13903
  • 9Ide,M.; Maeda,Y.; Kitano,H.J.Phys.Chem.B,1997,101:7022
  • 10Hechte,D.; Tadesse,F.; Walters,L.J.Am.Chem.Soc.,1993,115:3336

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部