期刊文献+

具有时滞与生理阶段结构的竞争捕食-被捕食系统的正周期解 被引量:3

Positive Periodic Solutions of a Competitive Predator-prey System with Delays and Stage-structure
原文传递
导出
摘要 运用重合度理论与Lyapunov泛函方法为一类具有时滞与生理阶段结构的竞争捕食-被捕食系统正周期解的存在性和全局吸引性提供了新的判别准则.文中利用积分中值定理将积分方程转换为代数方程,为拓扑度的计算提供了新的技巧;并讨论了时滞、阶段结构和竞争因素对系统正周期解的存在性和全局吸引性的影响;最后举例说明了文中的存在性条件比已有结论更简洁、全局吸引性的判别准则也是新的. By using Coincidence Degree Theorem and constructing a Lyapunov functional, new criteria are presented for the existence and global attractivity of positive periodic solu- tions of a competitive predator-prey system with delays and stage-structure. In this paper, we provide a new technique of caculation on topologic degree by transforming an integral equations into an algebraic one. Moreover, what the delays and stage-structure and competition affect on the existence and global attractivity of positive periodic solutions is discussed. Finally, an example is cited to illustrate that the existence conditions in this paper are more concise and the criterion for the global attractivity is also new.
出处 《应用数学学报》 CSCD 北大核心 2009年第2期368-380,共13页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10571044)资助项目
关键词 时滞 生理阶段结构 正周期解 重合度 LYAPUNOV泛函 delay stage-structure positive periodic solution coincidence degree Lyapunov functional
  • 相关文献

参考文献8

  • 1Chen L S. The Models of a Stage-structured Population Dynamics. J. Beihua University, 2000, 1(3): 185 -197
  • 2Wang W D, Chen L S. A Predator-prey System with Stage-structure for Predator. J. Computers and Mathematics Applications, 1997, 33:83 91
  • 3Fan Y H, Li W T, Wang L L. Periodic Solutions of Delayed Ratio-dependent Predator-prey with Monotonic or Nonmonotonic Functional Responses. J. Nonlinear Analysis:Real Word Applications, 2004, 5:247-263
  • 4Zhang Z Q, Wang Z C. Periodic Solution of a Two-species Ratio-dependent Predator-prey System with Time Delay in a Two-patch Enviromment. The ANZIAM J. Applied Mathematics, 2003, 45:233-244
  • 5Wen X Z, Wang Z C. Global Attractiviy of the Periodic Kolmogorov System. The ANZIAM J. Applied Mathematics, 2003, 44:569-581
  • 6Luo G L, Li F J, Liu B C. A Competitive and Prey-predator Model with Stage-structure. Annals of Differential Equations, 2004, 20(1): 49-58
  • 7Gains R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer- Verlag, 1977
  • 8Gopalsamy K. Stability and Oscillation in Delay Differential Equations of Population Dynamics. Dordecht: Kluwer Academic, 1992

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部