摘要
In this paper, we propose a new integral global optimization algorithm for finding the solution of continuous minimization problem, and prove the asymptotic convergence of this algorithm. In our modified method we use variable measure integral, importance sampling and main idea of the cross-entropy method to ensure its convergence and efficiency. Numerical results show that the new method is very efficient in some challenging continuous global optimization problems.
In this paper, we propose a new integral global optimization algorithm for finding the solution of continuous minimization problem, and prove the asymptotic convergence of this algorithm. In our modified method we use variable measure integral, importance sampling and main idea of the cross-entropy method to ensure its convergence and efficiency. Numerical results show that the new method is very efficient in some challenging continuous global optimization problems.
基金
Supported by the National Natural Science Foundation of China(No.10671117).