摘要
文章针对物理大地测量学反问题研究中的拟调和性重力场源及重调和性重力场源,将该研究中的理论核心——正交分解定理予以具体实现。使得这一定理实际应用于场源结构的解释与分析成为可能。同时,给出并证明几个具有重要实用意义的关于零外部位密度、拟调和性及重调和性场源性质的基本公式。最后对具体实现场源正交分解的实际步骤、正交分解定理的实质、以及物理大地测量学反问题研究中关于场源函数的主要限制的意义予以评述。
The orthogonal decomposition are made respectly to the quasi harmonic and multi harmonic resources of gravity field in inverse gravimetric problem. It is the first time to have the theorem of orthogonal decomposition, a theoretical kernel in inverse gravimetric problem, realized in practice. In the meantime, several formulas on the density of null external potential. quasi harmonics and multi harmonics are set and proven, which are very useful to construct and represent the characters of the functions above. Finally, some discussions are taken on the crux and procedure of the orthogonal decomposition and some comments are made on the real significance of the restrictions from the inverse gravimetric problem to the resource of gravity field.
出处
《测绘学报》
EI
CSCD
北大核心
1998年第2期105-112,共8页
Acta Geodaetica et Cartographica Sinica
关键词
重力场源
正交分解
调和性
物理大地测量
Orthogonal decomposition, Quasi harmonics, Multi harmonics, Resource of gravity field