摘要
近年来数据挖掘领域中的聚类和人工智能领域的计算智能都有长足的进步和发展。计算智能自组织、自学习的特性为聚类问题的解决提供了一个有效的途径。当前基于计算智能的聚类算法主要包括:基于神经网络的聚类算法、基于遗传算法的聚类算法和基于蚁群算法的聚类算法。本文针对以上算法进行了阐述,详细说明了算法思想、关键技术和优缺点,并提出了有待进一步研究的问题。
出处
《计算机系统应用》
2009年第4期32-35,共4页
Computer Systems & Applications
基金
湖南省自然科学基金项目(07JJ6126)