期刊文献+

基于群评价的带变异粒子群算法 被引量:4

Mutational Particle Swarm Optimization algorithm based on swarm evaluation
下载PDF
导出
摘要 粒子群算法是一类有效的随机全局优化算法,但是经典PSO算法容易陷入局部最小值。提出了一种新的带变异自适应参数调整PSO算法,通过引入粒子群评价,根据粒子群的整体性能评价对PSO算法的所有参数动态调整,使前期能够快速搜索;同时对粒子本身找到的最优解以动态调整概率进行变异去保证粒子的多样性,防止后期陷入局部极小。对三个常用测试函数的数值仿真结果显示了该算法的有效性。 Particle swarm optimization is an effective random and holistic optimization algorithm,but the classical PSO algorithm easily plunges into local minimums.The paper proposes a new PSO algorithm which uses mutation and self-adjustable parameters. Via introducing the particle swarm evaluation,all the parameters of PSO algorithm can be dynamically adjusted by the evaluation of particle swarm's holistic capability,then it can search fast in the prophase.At the same time the optimized result found in the particles mutated with the dynamic adjustable probability ensures the muhiformity of particles,so it can prevent the algorithm plunging into the local minimums.The, experimentative result of the three common testing functions shows the validity of the algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第12期57-59,62,共4页 Computer Engineering and Applications
关键词 粒子群(PSO) 群评价 变异 Particle Swarm Optimization ( PSO ) swarm evaluation mutation
  • 相关文献

参考文献8

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE International Conference on Neural Networks,Perth, Australia, 1995 : 1942-1948.
  • 2Shi Y,Eherhart R C.Fuzzy adaptive particle swarm optimization[C]// Congress on Evolutionary Computation, Seoul, Korea, 2001 : 101 - 106.
  • 3Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimizer with breeding and subpopulations[C]//The Third Genetic and Evolutionary Computation Conference,SanFranciseo,USA,2001:115- 118.
  • 4Ioan D,Ciuprina G,Munteanu I.Intelligent-particle swarm optimization[C]//Proceedings of 6th International Workshop on Optimization and Inverse Problems in Electromagnetism(OIPE 2000),Torino, Italy, 2000.
  • 5曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:159
  • 6Shi Y,Eherhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE International Conference on Evolutionary Computation.Piscataway,NJ:IEEE Press, 1998:69-73.
  • 7Shi Y,Eherhart R C.Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999:1945-1950.
  • 8Frans V D B.An analysis of particle swarm optimizers[D].South Africa:Department of Computer Science,University of Pretoria,2002.

二级参考文献7

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975

共引文献158

同被引文献24

  • 1徐晓华,陈崚.一种自适应的蚂蚁聚类算法[J].软件学报,2006,17(9):1884-1889. 被引量:55
  • 2刘全新,高建虎,董雪华.储层预测中的非线性反演方法(为《岩性油气藏》创刊而作)[J].岩性油气藏,2007,19(1):81-85. 被引量:16
  • 3Kennedy J,Eberhart R. Particle swarm optimization [C]//IEEE International Conference on Neural Networks. Proceedings of IEEE International Conference, 1995:1 942-1948.
  • 4Eberhart R,Kennedy J. A new optimizer using particle swarm theory [C].//Micro Machine and Human Science. Proceedings of the Sixth international Symposium, 1995 : 39-43.
  • 5Ye Fun,Chen Ching-Yi.Alternative KPSO-clustering algorithm[J]. Tamkang Journal of Science and Engineering,2005,8(2): 165-174.
  • 6Kennedy J, Eberhart R.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks(ICNN), Australia, 1995 : 1942-1948.
  • 7Ratnaweera A,Halgamuge S K, Watson H C.Self-organizing hier-archical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Trans on Evolutionary Computation, 2004, 8 (3) :240-255.
  • 8易远元,袁三一,黄凯,师学明.地震波阻抗反演的粒子群算法实现[J].石油天然气学报,2007,29(3):79-81. 被引量:17
  • 9Jing Jie,Jianchao Zeng.Chongzhao Han. Knowledge-based Cooperative Particle Swarm Optimization. Journal of Applied Mathematics . 2008
  • 10Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of the 1995 IEEE International Conference on Neural Networks . 1995

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部