期刊文献+

改进的SOFM算法及其在低延迟语音编码中的应用

Modified SOFM algorithm and application in low delay speech coding
下载PDF
导出
摘要 根据低延迟语音编码算法训练码书的尺寸和码字维数的特点,提出了一种改进的自组织特征映射(SOFM)神经网络的码书设计方法。对输入训练矢量以及连接权矢量进行归一化,为降低计算量和提高码书训练质量,采用快速的网络学习决定获胜的神经元并对网络权值分阶段进行自适应调整,最后应用于低延迟语音编码中。实验表明,与传统LBG算法比较,采用SOFM神经网络训练的码书其合成语音的主、客观质量均有较大提高。 According to the character of codebook size and codeword dimension in low delay speech coding algorithm,a codebook design algorithm based on modified Self-Organizing Feature Map(SOFM) neural network is proposed.The input train vectors and connection weight vectors are normalized.In order to reduce computation complexity and improve codebook performance,some fast search methods are used in SOFM iterations during searching for the winning neuron and decompose the adaptive adjusting process of network weights into two steps of sequencing and convergence.The proposed algorithm is used to generate vector quantization codebook in low delay speech coding algorithm.Experiment results show that,compared with LBG algorithm,modified SOFM algorithm can greatly improve the synthesized speech quality in the aspect of subjective and objective.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第12期124-125,156,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60372058 No.60772101~~
关键词 矢量量化 自组织特征映射神经网络 自适应调整 低延迟语音编码 vector quantization Self-Organizing Feature Map(SOFM) neural network adaptive adjust low delay speech coding
  • 相关文献

参考文献4

二级参考文献19

  • 1王茂芝,徐文皙.LBG^([1])算法对初始码书敏感的实验性能分析[J].物探化探计算技术,2004,26(4):374-378. 被引量:5
  • 2佘春东,孙世新,范植华,王茂芝,唐剑,邓洪勤.一种高效的基于模拟退火的LBG算法[J].小型微型计算机系统,2005,26(2):218-221. 被引量:7
  • 3Kohonen T. Self organized formation of topological correct feature maps[J]. Biological Cybernetics, 1982,43.
  • 4W L Bimtine. Operations for learning with graphical models[J]. Journal of Artifical Intelligence Research, 1994, 2: 159-225.
  • 5W W CHU, Q CHEN. Neighborhood and associative query answering[J]. Journal of Intelligence Information Systems, 1992,1 : 355-382.
  • 6M Stone. Cross-validmory choice and assessment of statistical and predications [ J ]. Journal of the Royal Statistical Society,1974, 36:111-147.
  • 7R WANG, V STOREY, C FIRTH. A framework for analysis of data quality research[ J]. IEEE Transactions on Knowledge and Data Engineering, 1995, 7:623-640.
  • 8STONE . Classification and Regression Trees[Z]. Wadsworth International Group, 1984.
  • 9Rakesh Agrawal, Ramakrishnan Srikant. Fast algorithms for mining association rules in large database[A]. Proceedings of the Twentieth International Conference on Very Large Databases[C].Santiago, Chile, 1994.
  • 10ITU-T Rec.P 800,Methods for Subjective Determination of Transmission Quality[S].Geneva,Switzerland,1996

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部