期刊文献+

一类四带小波紧框架存在的判据 被引量:1

A Sufficient Condition for the Existence of Tight Wavelet Frames with Four-Scale
下载PDF
导出
摘要 讨论框架多分辩分析{Vj}j∈Z的子空间V1中小波紧框架的存在性.根据泛函分析方法与矩阵理论,给出由子空间V1中的若干个函数γ1,γ2,…,γs成为小波紧框架的充分条件. The existence of tight wavelet frames which are generated by several bivariate functions γ1,γ2,…,γs∈ V1 of a frame multiresolution analysis is discussed.A sufficient condition for the existence of wavelet tight frames generated from those functions{Vj}j∈Z is presented by virtue of functional analysis methods and matrix theory.
作者 李杰 高新慧
出处 《河南科学》 2009年第4期388-392,共5页 Henan Science
基金 国家自然科学基金资助项目(10671154)
关键词 框架多分辩分析 尺度函数 紧框架 加细方程 小波紧框架 frame multiresolution analysis scaling function tight frames refinement equation trivariate wavelet tight frame
  • 相关文献

参考文献9

  • 1Duffin R J, Schaeffer A G. A class of nonharmonic fourier series[J]. Trans Am Math Soc, 1952, 72: 341-366.
  • 2Ron A, Shen Z. Affine systems in L2(R^d) : the analysis of the analysis operator[J]. Funct Anal, 1997, 148 (2) : 408-447.
  • 3Benedetto J. The theory of muhiresolution analysis frames and applications to filter banks [J]. Apple Comput Harm Anal, 1998, 5 : 389-427.
  • 4Daubechies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions [J]. Math Phys, 1986, 27: 1271-1283.
  • 5Christensen O. An Introduction to frames and riesz bases[M]. Boston: Birkhauser, 2003.
  • 6Czaja W, Kutyniok G, Speegle D. The geometry of sets of parameters of wave packet frames [J]. Appl Comput Harm Anal, 2006, 20: 108-125.
  • 7Casazza P G. The art of frame theory[J]. Taiwan Residents Journal of Mathematics, 2000,4 (2): 129-201.
  • 8Petukhov A. Explicit construction of framets[J]. Appl Comput Harm Anal, 2001,11:313-327.
  • 9崔丽鸿,程正兴,杨守志.小波紧框架的显式构造[J].数学物理学报(A辑),2004,24(1):94-104. 被引量:9

二级参考文献1

  • 1程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1997..

共引文献8

同被引文献20

  • 1周相泉.伸缩因子为3的尺度函数双正交的一个充要条件[J].山东师范大学学报(自然科学版),2005,20(3):14-16. 被引量:2
  • 2MeyerY.小波与算子[M].尤众,译.北京:世界图书出版社,1992.
  • 3Vetterli M, Kovacevi~ J. Wavelets and Subband Coding[ M ]. Englewood Cliffs, NJ : Prentice-Hall, 1995.
  • 4Young R. An introduction to Nonharmonic Fourier Series [ M ]. New York: [ s. n. ], 1980.
  • 5Kim H O, Kin R Y, Lim J K. Internal structure of thd multiresolution analysis defined by the unitrary extension principle [ J ]. Approx Theory,2008,154(2) : 140-160.
  • 6Bolcskei H, Hlawatsch F, Feichinger H G. Frame-theoretical analysis of oversampled filter banks [ J ]. IEEE Trans Signal Process, 1998,46(12) :3256-3268.
  • 7Christensen O. An Introduction to Frames and Riesz Bases [ M ]. Boston :Birkhuser,2003.
  • 8Selesnick I W. Balanced multiwavelet bases based on symmetric FIR filters [ J ]. IEEE Trans Signal Process, 2000,48 ( 1 ) : 163-181.
  • 9Abdelnour F, Selesnick I W. Symmetric nesrly shift invariant tight frame wavelets[ J]. IEEE Trans Signal Process ,2005,53 (1) : 231-239.
  • 10CHUI C, SUN Q. Affine frame decompositions and shift-invariant spaces[ J]. Appl Comput Harmon Anal ,2006,20( 1 ) :74-107.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部