期刊文献+

两种群中具有饱和传染率的SIS模型定性分析 被引量:2

A Qualitative Analysis of a SIS Model with Saturated Infection Rate Within Two Competitive Species
下载PDF
导出
摘要 研究了相互竞争的两种群中具有饱和传染率的SIS传染病模型,得到疾病传播与否的阈值条件及相应的平衡点的全局稳定性.结论表明,恢复率、出生率、死亡率、竞争强度、种群数量的增大,有利于疾病的控制与消逝,疾病传播的状况取决于上述因素总和与传染强度的大小关系. A SIS epidemic model with saturated infection rate within the two competitive species is studied. The threshold criteria are set up to determine whether disease persists in the species,and the overall stabilities of the corresponding equilibrium are obtained. The conclusion indicates that if the rehabilitation rate, birthrate and death rate, and competition intension are increased, disease will be controled or disappeared.
出处 《泉州师范学院学报》 2009年第2期5-9,共5页 Journal of Quanzhou Normal University
基金 福建省教育厅科技项目(JB08194)
关键词 饱和性传染率 SIS传染病模型 平衡点全局稳定性 saturated infection rate,SIS epidemic model global stabilities of equilibrium
  • 相关文献

参考文献7

二级参考文献23

  • 1Dushoff J,Huang W, Castillo- Chavez C. Backwards bifurcations and catastrophe in simple models of fatal diseases[J]. J Math Biol,1998, (3).
  • 2H. R. Thieme. Convergence results and a Poincare - Bendixson trichomy for asymptotically autonomous differential equation[ J]. J Math Bio1. 1992, (30).
  • 3Keeling M J, Grenfell B T. Effect of variability in infection period on the persistence and spatial spread of infectious diseases[J]. Math Biosci, 1998, (147).
  • 4Hyman J M, Li J, Stanley E A. The differential infectivity and staged progression models for the transmission of HIV[J]. Math Biosci,1999, (155).
  • 5[1]Dushoff J,Huang W, Castillo-Chavez C. Backwards bifurcations and catastrophe in simple models of fatal diseases[J]. J Math Biol,1998,36(3):227-248.
  • 6[2]Hyman J M, Li J, Stanley E A. The differential infectivity and staged progression models for the transmission of HIV[J]. Math Biosci,1999,155:77-109.
  • 7[3]Keeling M J, Grenfell B T. Effect of variability in infection period on the persistence and spatial spread of infectious diseases[J]. Math Biosci,1998,147:207-226.
  • 8Venturino E. Epidemics in Prefator-prey Models: Disease in the Prey[M]. Winnipeg, Canada: Wuerz Publishing,1995. 381-393.
  • 9Chattopadhyay J, Arion O. Apredator-prey model with disease in the prey[J]. Nolinear Anal., 1999,36: 747-766.
  • 10Xiao Y,Chen L. Modeling and analysis of a predator-prey model with disease in the prey[J]. Math. Biosci. ,2001,171:59-82.

共引文献41

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部