期刊文献+

二阶双曲方程的间断有限体积元方法 被引量:3

Discontinuous Finite Volume Element Method for Second Order Hyperbolic Equations
下载PDF
导出
摘要 在原始网格剖分上采用分片线性函数作为间断有限体积元方法的试探函数空间,在相应的对偶网格剖分上采取分片常数函数空间作为其检验函数空间,针对二阶双曲方程,给出了半离散的间断有限体积元方法,并且在一个依赖网格的范数下获得了最优误差估计. We consider discontinuous finite volume element approach to the second order hyperbolic problems. On the original grid, piecewise linear polynomial function space is used as the trial function space in this method, while on the dual grid, piecewise constant function space is used as the test function space. Finally the optimal order error estimate in a grid-dependent norm is given.
出处 《烟台大学学报(自然科学与工程版)》 CAS 北大核心 2009年第2期97-101,共5页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(10601045)
关键词 间断有限体积元方法 双曲方程 半离散格式 discontinuous finite volume element method hyperbolic equations semi-discrete scheme
  • 相关文献

参考文献3

  • 1Ye Xiu. A new discontinuous finite volume method for elliptic problems[ J]. SIAM J Numer Anal, 2004, 42 : 1062-1072.
  • 2Chou So-Hsiang,Ye Xiu. Unified analysis of finite volume methods for second order elliptic problems [ J ]. SIAM J Numer Anal, 2007, 45 : 1639-1653.
  • 3Bi Chunjia, Superconvergence of finite volume element method for a nonlinear elliptic problem [ J ]. Numer Methods PDFs, 2007, 23:220-233.

同被引文献20

  • 1YAN Zhi-Lian LIU Xi-Qiang.Symmetry Reductions and Explicit Solutions for a Generalized Zakharov-Kuznetsov Equation[J].Communications in Theoretical Physics,2006,45(1):29-32. 被引量:12
  • 2LI Rong-hua, CHEN Zhong-ying, WU Wei. Generalized Difference Methods for Differential Equations (Numerical Analysis of Finite Volume Methods)[M]. New York: Marcel Dekker, 2000.
  • 3BAUMANN C E, ODEN J T. A discontinuous Hp finite element method for convection-diffusion prob- lems[J]. Computer Methods in AppLied Mechanics and Engineering, 1999, 175: 311-341.
  • 4COCKBUM B, SHU C W. The local discontinuous Galerkin finite element method for time-dependent convection-diffusion systems[J]. SIAM J Numer Anal, 1998, 45(4).- 2440-2463.
  • 5AMOLD D N, BREZZI F, COCKBUM B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM J Numer Anal, 2002, 39(4): 1749-1779.
  • 6YE Xiu. A new discontinuous finite volume method for elliptic problems [J]. SIAM J Numer Anal, 2004, 42(3): 1062-1072.
  • 7YE Xiu. A discontinuous finite volume method for the Stokes problems [J]. SIAM J Numer Anal, 2006, 44(3): 183-198.
  • 8CHOU So-hsiang, YE Xiu. Unified analysis of finite volume methods for second order elliptic problems [J]. SlAM J Numer Anal, 2007, 45(4): 1639- 1653.
  • 9BI Chun-jia, GENG Jia-qiang. Discontinuous finite volume element method for parabolic problems[J]. Numer Methods Partial Differential Equations, 2009, 1: 1-17.
  • 10ADAMS R A. Sobolev Spaces [M]. New York: Academic Press, 1975.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部