摘要
在原始网格剖分上采用分片线性函数作为间断有限体积元方法的试探函数空间,在相应的对偶网格剖分上采取分片常数函数空间作为其检验函数空间,针对二阶双曲方程,给出了半离散的间断有限体积元方法,并且在一个依赖网格的范数下获得了最优误差估计.
We consider discontinuous finite volume element approach to the second order hyperbolic problems. On the original grid, piecewise linear polynomial function space is used as the trial function space in this method, while on the dual grid, piecewise constant function space is used as the test function space. Finally the optimal order error estimate in a grid-dependent norm is given.
出处
《烟台大学学报(自然科学与工程版)》
CAS
北大核心
2009年第2期97-101,共5页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
国家自然科学基金资助项目(10601045)
关键词
间断有限体积元方法
双曲方程
半离散格式
discontinuous finite volume element method
hyperbolic equations
semi-discrete scheme