期刊文献+

基于K2结构学习算法的多光谱影像贝叶斯网络分类器 被引量:1

Bayesian Network Classifier for Multi-spectral Image Based on K2 Structure Learning Algorithm
下载PDF
导出
摘要 用基于启发式搜索的结构学习算法,学习得到多光谱影像的贝叶斯网络结构,分析了TM的波段(特征)间条件独立性假设的合理性,给出了贝叶斯推理中后验概率计算的公式,并通过和最大似然法对比试验分析了简单贝叶斯网络应用于多光谱影像分类的优势。 From the structure learning methods of search heuristics, we constructed a NaY ve Bayesian Network for the multi-spectral image. We proved that the hypothesis of conditional independence between TM bands was successful, and analyzed the feasibility of applying NaI ve Bayesian Networks to the classification of multi-spectral image through experiment.
出处 《地理空间信息》 2009年第2期15-18,共4页 Geospatial Information
基金 国家重点基础研究发展计划资助项目(2006CB701303)
关键词 遥感 贝叶斯网络 结构学习 条件独立性假设 多光谱影像 分类 remote sensing Bayesian networks structure learning hypothesis of conditional independence multi-spectral image classification
  • 引文网络
  • 相关文献

参考文献3

  • 1戴芹,马建文,陈雪,刘建明,王尔和.航空遥感数据的贝叶斯网络分类[J].国土资源遥感,2005,17(1):34-36. 被引量:3
  • 2Nir Friedman,Dan Geiger,Moises Goldszmidt. Bayesian Network Classifiers[J] 1997,Machine Learning(2-3):131~163
  • 3Gregory F. Cooper,Edward Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data[J] 1992,Machine Learning(4):309~347

二级参考文献7

  • 1HASI Bagan, MA Jianwen, LI Qiqing, et al.The Self-Organizing Feature Map Neural Networks Classification of the ASTER Data Based on Wavelet Fusion[J].China Science(D),2003,33(9):896-902.
  • 2Jianwen Ma, Huadong Guo, Changlin Wang, et al.Extraction of polymetallic mineralization in formation from multispetral Thematic Mapper data uaing the Gram-Schmidt orthogonal projection (GSOP) method[J].INT.J.Remote Sensing, 2001,22(17):3323-3337.
  • 3Cheng J, Greiner R, Kelly J, et al.Learning Bayesian Networks from Data: an Information-Theory Based Approach[J].The Artificial Intelligence Journal, 2002, 137(1):43-90.
  • 4Keinosuke Fukunaga, Thomas F Krile.Calculation of Bayes recognition error for two multivariate Gaussian distributions[J].IEEE Transactions on computers, 1969,18:220-229.
  • 5Fayyad U M, Irani K B.Multi-interval discretization of continuous-valued attributes for classification learning[A].In Proceedings of the 13th International Joint Conference on Artificial Intelligence[C].pages San Mateo, CA, Morgan Kaufmann,1993,1022-1027.
  • 6周颜军,王双成,王辉.基于贝叶斯网络的分类器研究[J].东北师大学报(自然科学版),2003,35(2):21-27. 被引量:55
  • 7包振强,王宁生,李斌.专家知识库粗集建模中基于熵的数据离散化[J].数学的实践与认识,2003,33(8):60-65. 被引量:4

共引文献2

同被引文献4

引证文献1

;
使用帮助 返回顶部