期刊文献+

连续条件下双重倒向随机微分方程的比较定理

Comparison Theorem of Backward Doubly Stochastic Differential Equations with Continuous Coeffcient
下载PDF
导出
摘要 利用Tanaka-Meyer公式研究了双重倒向随机微分方程在连续条件下的比较定理. In this paper, we study the comparison theorem of backward doubly stochastic differ-ential equtions with continuous coefficient by Tanaka-Meyer formula.
作者 段鹏举
出处 《广西民族大学学报(自然科学版)》 CAS 2009年第1期45-47,共3页 Journal of Guangxi Minzu University :Natural Science Edition
基金 国家自然科学基金(10726075)
关键词 双重倒向随机微分方程 GRONWALL不等式 Tanaka--Meyer公式 Backward doubly stochastic differential eqution Gronwall inequality Tanaka-Meyer formula.
  • 相关文献

参考文献6

  • 1Pardoux E,Peng S.Adapted solution of A backward stochastic differential equations[].Systems and Control Letters.1990
  • 2Peng S.A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation[].Stochastics.1992
  • 3Liu,J. C.,Ren,J. G.Comparison theorem for solutions of backward stochastic differ- ential equations with continuous coefficient[].Statistics and Probability Letters.2002
  • 4Pardoux E,Peng S.Backward doubly SDES and systems of quasilinear SPDEs[].Probability Theory and Related Fields.1994
  • 5Shi Y,Gu Y,Liu K.Comparison theorem of backward doubly stochastic differential equations and applications[].Stochastic Analysis and Applications.2005
  • 6Lepeltier,J. P.,Martin,J. San.Backward stochastic differential equations with contin- uous coefficient[].Statistics and Probability Letters.1997

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部