连续条件下双重倒向随机微分方程的比较定理
Comparison Theorem of Backward Doubly Stochastic Differential Equations with Continuous Coeffcient
摘要
利用Tanaka-Meyer公式研究了双重倒向随机微分方程在连续条件下的比较定理.
In this paper, we study the comparison theorem of backward doubly stochastic differ-ential equtions with continuous coefficient by Tanaka-Meyer formula.
出处
《广西民族大学学报(自然科学版)》
CAS
2009年第1期45-47,共3页
Journal of Guangxi Minzu University :Natural Science Edition
基金
国家自然科学基金(10726075)
参考文献6
-
1Pardoux E,Peng S.Adapted solution of A backward stochastic differential equations[].Systems and Control Letters.1990
-
2Peng S.A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation[].Stochastics.1992
-
3Liu,J. C.,Ren,J. G.Comparison theorem for solutions of backward stochastic differ- ential equations with continuous coefficient[].Statistics and Probability Letters.2002
-
4Pardoux E,Peng S.Backward doubly SDES and systems of quasilinear SPDEs[].Probability Theory and Related Fields.1994
-
5Shi Y,Gu Y,Liu K.Comparison theorem of backward doubly stochastic differential equations and applications[].Stochastic Analysis and Applications.2005
-
6Lepeltier,J. P.,Martin,J. San.Backward stochastic differential equations with contin- uous coefficient[].Statistics and Probability Letters.1997