期刊文献+

一类常微分方程特征值的带权估计 被引量:3

Weightd Estimates for Eigenvalues for a Differential Equation
下载PDF
导出
摘要 考虑一类常微分方程的特征值的带权估计,利用分部积分、Rayleigh定理和不等式估计等方法,获得了用前n个特征值来估计第n+1个特征值的上界的不等式,其估计系数与区间的几何度量无关,其结果在物理学和力学等领域中应用广泛。 This paper considers the estimates for eigenvalues of a differential equation . We construct some test function and then use the Rayleigh theorem to obtain a basic inequality. These estimates are that the ( n + 1 )th eigenvalues is bounded from above by an amount depending on the first n eigenvalues and being independent of the measure of the domain in which the problem is concerned. This kind of problem is significant is potential application to mechanics and physics.
作者 吴平
出处 《荆门职业技术学院学报》 2009年第2期51-56,共6页 Journal of Jingmen Technical College
关键词 常微分方程 特征值 带权估计 differential equation eigenvalue weighed estimates
  • 相关文献

参考文献3

二级参考文献5

共引文献9

同被引文献5

  • 1G. N. Hile and R. Z. Yen Inequalities for eigenvalues of the biharmonic operator [ J ]. Pacific J. Math. , 1984 ( 112 ) : 115-133.
  • 2HILE G N,YEN R Z.Inequalities for Eigenvalues of the Bihannonic Operator[J].Pacific J Math,1984,112:115-133.
  • 3G. H. Hile and R. Z. Yeh. Inequalities for Eigenvalues of the Biharmonic Operator[J]. Pacific J Math, 1984 (1):115 -132.
  • 4M. H. Printer. (}an you hear the shape of a drum[J]. SIAM Rev, 1987, (2) : 185- 197.
  • 5吴平.一类常微分方程特征值的上界估计[J].宁波职业技术学院学报,2009,13(2):44-47. 被引量:5

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部