期刊文献+

基于系数关系共生矩阵和SVM的纹理分析 被引量:5

Texture Analysis Based on Coefficient Relationship Co-occurrence Matrix and SVM
下载PDF
导出
摘要 纹理是图像中非常重要的特征。提出了一种新的纹理特征提取算法,即对纹理图像进行离散小波框架变换后,利用同一变换尺度下的小波高频系数与低频系数之间的依存关系信息,构造系数共生矩阵,在此基础上进行纹理特征提取,而不是独立地提取各子带系数特征。考虑支撑向量机(SVM)在小样本数据库和泛化能力方面的优势,在分类实验中采用支撑向量机分类器,实验结果表明,基于这种共生矩阵特征提取分类算法能得到很好的分类结果。 Texture is an important image feature. A novel texture feature extraction technique is proposed based on coefficient co-occurrence matrix of discrete wavelet frame transformed image, which captures the information about relationship between each high frequency subband and low frequency subband of the decomposed image at the corresponding level. It is not independent to extract the information of each subband coefficient. Considering that the Support Vector Machine (SVM) has advantages of resolving the small-sample statistics and generalizing ability, the classification performance is analyzed by using the SVM classifier. The experimental results demonstrate the effectiveness of our proposed texture feature in achieving the improved classification performance.
出处 《光电工程》 CAS CSCD 北大核心 2009年第4期128-132,共5页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60472006) 广东省自然科学基金团队研究项目(04205783) 江西省教育厅2008年度科技计划资助项目(GJJ08414)
关键词 离散小波框架变换 系数共生矩阵 纹理特征 支撑向量机 discrete wavelet frame transform coefficient co-occurrence matrix texture feature support vector machine
  • 相关文献

参考文献12

二级参考文献91

  • 1李毅,阮秋琦.应用支持向量机的纹理分类[J].通信学报,2005,26(1):114-119. 被引量:10
  • 2黎奎,宋宇,邓建奇,刘民,陈忠林,周激流.基于特征脸和BP神经网络的人脸识别[J].计算机应用研究,2005,22(6):236-237. 被引量:19
  • 3练秋生,孔令富.冗余轮廓波变换的构造及其在SAR图像降斑中的应用[J].电子与信息学报,2006,28(7):1215-1218. 被引量:10
  • 4刘松涛,周晓东.图像融合技术研究的最新进展[J].激光与红外,2006,36(8):627-631. 被引量:30
  • 5[1]Marsicoi M D. Cinque I, Levialdi S. Indexing pictorial document by their content:A survey of current techniques[J].Image and Vision Computing, 1997,15(2): 119~141.
  • 6[2]Flickner M. Sawhney H, Ashley J et al. Query by image and video content:The QBIC system[J]. IEEE Computer, 1995,28(9):23~32.
  • 7[3]Pentland A. Picard R W. Sclaroff S. Photobook: Tools for content-based manipulation of image databases[A]. In:Proc. of the SPIE Storage and Retrieval for Image and Video Databases II [C]. San Jose. CA.1994,2185:34~47.
  • 8[4]Aslandogan Y A. Clement T Yu. Techniques and systems for image and video retrieval [J]. IEEE Trans. on Knowledge and Data Engineering. 1999,11(1) :56~63.
  • 9[5]Mallat Stephane G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans. on Pattern and analysis and Machine Intelligence, 1989, 11 (7):647 ~693.
  • 10[6]Chang T. Kou J. Texture analysis and classification with treestructured wavelet transform [J]. IEEE Trans. on Image Processing, 1993,2(4) :429~441.

共引文献2449

同被引文献46

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部