摘要
力学性能失配较大的多层结构自高温状态冷却收缩时会积聚很大的应力,其应力失稳模式可表现为多种有序的应力花样,可用于微纳米结构的自组装,其中支撑面的几何结构对其上的应力分布点阵具有决定性的影响.本文介绍了在球形和圆盘形内核/壳层上通过应力工程形成的三角铺排和菲波纳契螺旋花样,探讨了以相互排斥粒子的最小能量构型为模型的特征应力花样与其支撑结构的几何之间关系的普适性,并将此模型用于解释自然界中花叶序的多样性与特征不变性.
Large stress develops in the interface of a mechanically mismatched core/shell microstructures that shrink due to cooling from high temperature, and the stress-driven buckling mode can manifest various ordered patterns. This procedure can be utilized beneficially for the self-assembly of micro- and nanostructures, and the geometry of the supporting surface plays a pivotal role in determining the stress patterns eventually available. In this review article, we present the fabrication of triangular tessellations and Fibonacci parastichous spirals on the spherical and disc-like core/shell microstructures via stress engineering, and make a brief discussion over the universality of the relation between the stressed patterns, modeled as least-energy configurations for mutually repulsive particles, and the geometry of the supporting surfaces. The rationale can be also applied to the explanation of the variety and robustness of phyllotactic patterns in nature.
出处
《科学通报》
EI
CAS
CSCD
北大核心
2009年第7期849-860,共12页
Chinese Science Bulletin
基金
中国民用空间科学项目资助.
关键词
应力工程
三角铺排
菲波纳契螺旋
拓扑
花叶序
微纳米制造
stress engineering, triangular tessellation, Fibonacci parastichous spirals, topology, phyllotaxy, micro- and nanofabrication