期刊文献+

棉铃虫和甜菜夜蛾中肠丝氨酸蛋白酶活性测定以及活化、降解Cry1Ac毒素分析 被引量:4

Activity assay of midgut serine proteases and analysis of Cry1Ac protoxin activation and toxin degradation in Helicoverpa armigera and Spodoptera exigua.
下载PDF
导出
摘要 昆虫中肠对Bt原毒素活化与对活化毒素降解的变化被认为是害虫对Bt产生的机制之一,研究比较棉铃虫Helicoverpa armigera(Hübner)与甜菜夜蛾Spodoptera exigua(Hübner)的中肠液、BBMV蛋白酶的活性,通过SDS-PAGE分析2种昆虫对原毒素的活化速度与对活化毒素的降解速度。2种昆虫的中肠液蛋白酶活性均显著高于BBMV蛋白酶活性,中肠液与BBMV均能迅速活化原毒素并继续降解活化后的毒素,与中肠液相比,BBMV对原毒素的活化与对活化毒素的降解均慢于中肠液,甜菜夜蛾对毒素的活化与降解又慢于棉铃虫。另外,还测定抑制剂对中肠液蛋白酶活性的抑制作用,结果表明,各抑制剂对棉铃虫和甜菜夜蛾相应酶活性的抑制表现出相同的趋势,TLCK对丝氨酶蛋白酶具较好的抑制作用,而PMSF对胰蛋白酶的抑制作用次之,TPCK对胰凝乳蛋白酶的抑制作用较弱。 The aheration of protoxin activation and degradation of activated toxin was considered as one of the main mechanisms of insect resistance to Bacillus thuringiensis. The activities of proteinases in midgut juice and BBMV from Helicoverpa armigera Hǔbner and Spodoptera exigua Hǔbner were assayed and the processes of protoxin activation and degradation of activated Cry1Ac toxin were analysed by SDS-PAGE. Serine proteases of midgut juice from cotton bollworm and beet armyworm were more active than those of BBMV. Midgut juice and BBMV could activate Cry1Ac protoxin and thereafter breakdown the activated Cry1Ac toxin, However the process of protoxin activation and toxin degradation by BBMV is much slower than by midgut juice, and the protoxin activation and toxin breakdown by cotton bollworm is much faster than by beet armyworm. Moreover, the inhibition of PMSF, TLCK, TPCK over midgut protease activities were also measured. Three inhibitors gave the same inhibition pattern over proteases from cotton bollworm and beet armyworm. TLCK gave strong inhibition on trysin activity, TPCK had weak inhibition over chymotrypsin.
出处 《昆虫知识》 CSCD 北大核心 2009年第2期260-266,共7页 Entomological Knowledge
基金 国家自然科学基金资助项目(编号:30671369)。
关键词 棉铃虫 甜菜夜蛾 蛋白酶 中肠刷状缘膜囊泡 苏云金芽胞杆菌 Bt菌素 Helicoverpa armigera, Spodoptera exigua, proteinase, BBMV, Bacillus thuringiensis, Bt endotoxin
  • 相关文献

参考文献29

  • 1Schnepf E., Crickmore N., Van Rie J., et al. Bacillus thuringiensis and its pesticidal crystal proteins. Mol. Biol. Rev., 1998, 62(3): 775-806.
  • 2Shelton A. M., Zhao J. Z., Roush R. T. Economic,ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol., 2002, 47: 845- 881.
  • 3Knowles B. H., Dow J. A. T. The crystal δ-endotoxins of Bacillus thuringiensis : models for their mechanism of action on the insect gut. BioEssays, 1993, 15(7) : 469 - 476.
  • 4Gill S. S., Cowles E. A., Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CrylAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem., 1995, 270(10) : 27 277 - 27 282.
  • 5Ferre J., Van Rie J. Biochemistry and genetics of inseCt resistance to Bacillus thuringiensis. J. Rev. Entomol., 2002, 47:501 - 533.
  • 6Rajamohan F., Lee M. K., Dean D. H. Bacillus thuringiemis insecticial proteins: molecular mode of action. Prog. Nucl. Acid Res. Mol. Biol., 1998, 60 : 3 - 27.
  • 7Oppert B., Kramer K. J., Johnson D. E., et al. Mtered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem. Biophys. Res. Co mmun., 1994, 198(3): 940-947.
  • 8Oppert B., Kramer K. J., Johnson D. E., et al. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CrylAc protoxin. Insect Biochem. Mol. Biol., 1996, 2,6(6) : 571-583.
  • 9Oppert B., Kramer K. J., Beeman R. W., et al. Proteinasemediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem., 1997, 272(38) : 23 473 - 23 476.
  • 10Forcada C., Alcacer E., Garcera M. D., et al. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis. Arch. Insect Biochem. Physiol., 1996, 31(3) : 257 - 272.

二级参考文献13

  • 1戴经元,轩海连,孙明,喻凌,喻子牛.用血清学方法测定苏云金芽孢杆菌晶体蛋白含量[J].中国生物防治,1996,12(4):178-181. 被引量:6
  • 2Xu G,J Econ Entomol,1994年,87卷,2期,334页
  • 3HOFMANN C, VANDERBRUGGEN H, HOFTE H, et al. Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect mid-guts[J]. USA, Proc Natl Acad Sci, 1998, 85: 7 844-7 884.
  • 4ALGIMANTAS P, VALAITIS, KYONG M I, et al. Brush Border Membrane Aminopeptidase-N in the Midgut of the Gypsy moth serves as the receptor for the Cry1Ac δ-endotoxin of Bacillus thuringiensis[J]. Insect Biochem Molec Biol, 1995, 25(10):1143-1151.
  • 5BIETLOT H, CAREY P R, CHOMA C, et al. Facile preparation and characterization of the toxin from Bacillus thuringiensis var. kurstaki[J]. Biochemistry J, 1989,260:87-91.
  • 6ZHANG J H, WANG C Z, XIANG X F, et al. Effect of disolution and degradation on the toxicity of Bacillus thuringiensis delter-endotoxins to cotton bollworm [J]. Entomologia Sinica, 1997,4(4):357-363.
  • 7Schnepe E,Crickmore N, Van R J, MicroBiol Mol Bio. Rev,1998,62(3) :775-806.
  • 8Lereclus D. Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuri ngiensis spoOA mutant[J]. Bio/Technol, 1995 ( 13 ) : 67 - 71.
  • 9John M Walker. The protein protocols handbook[ M]. Human Press, 2002.7 - 9.
  • 10左雅慧,丁之铨,张杰.苏云金芽孢杆菌培养条件及晶体蛋白提纯方法初探[J].植物保护,1999,25(4):32-34. 被引量:13

共引文献71

同被引文献112

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部