摘要
运用Zalcman引理,证明了设F为区域D内的一个全纯函数族,k∈N+(≥2),P(z)是一个多项式,且(P(z))<k,若f∈F,f和f′CM分担P(z),且当f(z)=P(z),z∈D时,有|f(k)|≤K,则F在D上是正规的.此结论推广了徐炎,刘志宏所证明的关于正规性的一些结果.
Using the Zalcman lemma, it is proved that let F be a family of holomorphic functions in a domain D,k(≥2) be a positive integer and let P(z) be a polynomial and Э(P (z)) 〈 k. If eachf∈F,K be a positive inte-ger, when f(z) = P (z) ,z ∈ D, then |f(k)|≤ K, where f and f shared P (z), then F is normal in D. Some normality criterions proved by XU Yan and LIU Zhi-hong are extended and improved by this result.
出处
《纺织高校基础科学学报》
CAS
2009年第1期4-7,共4页
Basic Sciences Journal of Textile Universities
关键词
全纯函数
正规族
分担值
holomorphic function
normality
shared values