期刊文献+

关于中心化子的一类映射 被引量:5

A class map about centralizers
下载PDF
导出
摘要 X表示实数域或复数域F上的Banach空间,设M是X上的一个标准算子代数,I是M的单位元.证明了若可加映射φ:M→B(X)满足A∈M,非零实数m和n,有(m+n)φ(A2)-mAφ(A)-nφ(A)A∈FI.则ヨλ∈F,使得φ(A)=λA. Let X be a Banach space over the real or complex field F, let Nb be a standard operator algebra on X with unit I. The form of each additive map ФNb→B(X)is proved that if there exist nonzero real m and n such that (m+n)Ф(A^2)-mAФ(A)-nФ(A)A∈FI.holds for allA∈Nb,then Ф(A)+λA,where λ∈F.
出处 《纺织高校基础科学学报》 CAS 2009年第1期25-28,共4页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10571114) 陕西省自然科学研究计划资助项目(2004A17)
关键词 可加映射 中心化子 算子代数 additive map centralizers operator algebra
  • 相关文献

参考文献5

  • 1BEIDAR K I, MARTINDALL III W S, MIKHALEV A V. Rings with generalized identities [ M ]. New York: Marcel Dekker Inc, 1996.
  • 2VUKMAN J. Centralizers on semiptime tings[J]. Comment Math Univ Carolinae ,2001,42 :237-245.
  • 3VUKMAN J. An identity related to centralizers on semiprime rings[ J]. Comment Math Univ Carolinae, 1999, 40:447-456.
  • 4齐霄霏,杜拴平,侯晋川.中心化子的刻画[J].数学学报(中文版),2008,51(3):509-516. 被引量:13
  • 5VUKMAN J, KOSI-Ulbl I. On centralizers of semiprime rings[ J]. Aequationes Math,2003,66:277-283.

二级参考文献9

  • 1Beidar K. I., Martindal III W. S., Mikhalev A. V., Rings with generalized identities, New York: Marcel Dekker Inc., 1996.
  • 2Zalar B., On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 1991, 32: 609-614.
  • 3Benkovic D., Eremita D., Characterizing left centralizers by their action on a polynomial, Publ. Math. Debrecen., to appear.
  • 4Molnar L., On centralizers of an H^*-algebra, Publ. Math. Debrecen, 1995, 46: 89-95.
  • 5Vukman J., Kosi-Ulbl I., On centralizers of semiprime rings, Aequationes Math., 2003, 66: 277-283.
  • 6Vukman J., Kosi-Ulbl I., Centralisers on rings and algebras, Bull. Austral. Math. Soc., 2005, 71: 225-234.
  • 7Bresar M., Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 1991,III: 501-510.
  • 8Bresar M., Centralizing mappings and derivations in prime rings, J. Algera, 1993, 156: 385-394.
  • 9Bresar M., On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc., 1992, 114: 641-649.

共引文献12

同被引文献41

  • 1HERSTEIN I N. Jordan derivation of prime rings[J].Proc Amer Math Soc, 1957,8:1 104-1 110.
  • 2BRESAR M. Jordan derivation on semiprime rings [ J ]. Proc Amer Marh Soc, 1988,104 : 1 003-1 006.
  • 3BRESAR M,VUKMAN J. Jordan (θ,φ)-derivatlons[ J]. Glas Mat Ser III ,1991,26(1/2) :13-17.
  • 4BRESAR M. On the distance of the composition of two derivations to the generalized derivations[ J]. Glasgow Math J, 1991, 33 : 89 -93.
  • 5ASHRAF M, REttMAN N, ALI S. On Lie ideals and Jordan generalized derivations of prime rings[ J ]. Indian J Pureand Appl Math ,2003,34:291-294.
  • 6BRESAR M, VUKMAN J. Jordan derivation on prime tings[ J ]. Bull Austral Math Soc,1988,37:321-322.
  • 7AWTAR R. Lie ideals and Jordan derivations of prime rings[J]. Proe Amer Math Soc, 1984,90:9-14.
  • 8ARGAC N, ALBAS E. On generalized ( σ, τ ) -derivations [ J ]. Siberian Math J,2002,43 : 977-984.
  • 9ZALAR B. On centralizers of semprime tings[ J]. Comment Math Univ Carolin, 1991,32:609-614.
  • 10ZHU J,XIONG C. Generalized derivable mapping at zero point on some reflexive operator algebras[ J]. Linear Algebra Appl, 2005,397:367-370.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部