期刊文献+

混沌信号的马尔可夫模型降噪 被引量:4

Chaotic Signal Denoising Based on Markov Model
下载PDF
导出
摘要 基于马尔可夫模型的思想,提出了一种混沌信号的小波域统计降噪方法。利用对偶树复小波对信号进行小波分解,保留最高尺度上的尺度系数不变,对分解后的高频小波系数建立隐马尔可夫树模型。采用期望最大化算法估计该模型的参数,结合经验贝叶斯方法估计源信号的小波系数,再用对偶树复小波逆变换得到降噪后的混沌信号。该模型具有近似平移不变性,计算复杂度小且能够捕获小波系数邻域的统计特征。仿真中分别对叠加不同强度高斯噪声的Lorenz混沌信号及实测远红外激光器产生的混沌信号进行了研究。结果表明了该方法的有效性,且能够较好地校正相空间中点的位置,逼近真实的混沌吸引子轨迹。 A chaotic signal statistical denoising method in wavelet domain was proposed based on the idea of Markov model. The signal was decomposed by dual-tree complex wavelet. The wavelet coefficients as hidden Markov trees model was modeled while keeping the highest scale coefficients unchanged. Efficient Expectation Maximization algorithm was developed for fitting the hidden Markov trees model to wavelet coefficients. Empirical Bayesian method was used to estimate source signal wavelet coefficients. And using dual-tree complex wavelet inverse transform, the denoised chaotic signal could be got. The model is nearly shift invariant and can exploit the local statistics of wavelet coefficients at a low computational complexity. Both the chaotic signal generated by Lorenz map with different level Gaussian noise and the data generated by far-infrared laser were respectively applied for noise reduction using this method. The numerical experiments results show that the proposed method is efficient. It can better correct the position of data points in phase space and approximate the real chaotic attractor trajectories more closely.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第8期2299-2302,2307,共5页 Journal of System Simulation
基金 教育部科学技术研究重大项目(309017) 合肥工业大学科学研究发展基金(081004F 080503F) 合肥工业大学博士专项基金(GDBJ2008-029) 合肥工业大学学生创新基金(xs08078)
关键词 混沌信号 降噪 对偶树复小波 马尔可夫 贝叶斯 chaotic signal denoising dual-tree complex wavelet Markov Bayesian
  • 相关文献

参考文献13

  • 1Dedieu H, Kisel A. Communications with chaotic time series: probabilistic methods for noise reduction [J]. International Journal of Circuit Theory and Applications (S1097-007X), 1999, 27(6): 577-587.
  • 2Jako Z, Kis G. Application of Noise Reduction to Chaotic Communications:A Case Study [J]. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications (S1057-7122), 2000, 47(12): 1720-1725.
  • 3韩敏,刘玉花,史志伟,项牧.改进局部投影算法的混沌降噪研究[J].系统仿真学报,2007,19(2):364-368. 被引量:16
  • 4王洪超,李亚安.局部投影降噪算法邻域半径参数的选择研究[J].系统仿真学报,2007,19(4):805-807. 被引量:11
  • 5刘元峰,赵玫.基于奇异谱分析的降噪方法及其在计算最大Liapunov指数中的应用[J].应用数学和力学,2005,26(2):163-168. 被引量:7
  • 6Donoho D L. De-Noising by soft thresholding [J]. IEEE Transactions on Information Theory (S0018-9448), 1995, 41(3): 617-627.
  • 7Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association (S0162-1459), 1995, 90(432): 1200-1224.
  • 8韩敏,刘玉花,席剑辉,史志伟.基于小波变换阈值决策的混沌信号去噪研究[J].信息与控制,2005,34(5):543-547. 被引量:19
  • 9M S Crouse, R D Nowak. Wavelet-based signal processing using hidden markov models [J]. IEEE Transactions on Signal Processing (S1053-587X), 1998, 46(4): 886-902.
  • 10Kingsbury N. The Dual-tree Complex Wavelet Transform: a New Efficient Tool for Image Restoration and Enhancement [C]// Theodoridi, S. The 9th European Signal Processing Conference, Rhodes, Greece, 1998:319-322.

二级参考文献56

  • 1游荣义,陈忠,徐慎初,吴伯僖.基于小波变换的混沌信号相空间重构研究[J].物理学报,2004,53(9):2882-2888. 被引量:21
  • 2赵健,齐华,田泽,周明全.改进的小波域混沌数字水印算法实现[J].光子学报,2004,33(10):1236-1238. 被引量:11
  • 3吴永宏,潘泉,张洪才,孟晋丽.基于离散小波变换的滤波方法研究[J].系统仿真学报,2004,16(12):2706-2708. 被引量:8
  • 4Jayawardena A W, Gurung A B. Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs stochastic approach [J]. Journal of Hydrology, 2000, 228(3-4): 242 ~264.
  • 5Kostelich E J, Schreiber T. Noise reduction in chaotic time series:a survey of common methods [J]. Physical Review E, 1993,48(3): 1752 ~ 1763.
  • 6Jako Z. Application of noise reduction to chaotic communications:a case study [ J ]. IEEE Transactions on Circuits and Systems:Fundamental Theory and Applications, 2000, 47(12): 1720 ~1725.
  • 7Dedieu H, Kisel A. Communications with chaotic time series:probabilistic methods for noise reduction [ J]. International Journal of Circuit Theory and Applications, 1999, (27): 577 ~ 587.
  • 8Grassberger P, Hegger R, Kantz H, et al. On noise reduction methods for chaotic data [J]. Chaos, 1993, 3(2) :127 ~ 141.
  • 9Shin K, Hammond J K, White P R. Iterative SVD method for noise reduction of low-dimensional chaotic time series [ J ]. Mechanical Systems & Signal Processing, 1999, 13 ( 1 ): 115 ~124.
  • 10Bukkapatnam S T S, Kumara S R T, Lakhtakia A,et al. The neighborhood method and its coupling with the wavelet method for signal separation of chaotic signals [ J ]. Signal Processing,2002, 82(10): 1351 ~ 1374.

共引文献48

同被引文献30

  • 1毛中亚,郭其一.城市轨道交通系统谐波的小波降噪仿真分析[J].系统仿真学报,2006,18(z2):939-941. 被引量:4
  • 2李丽丽,曲昭伟,陈永恒,王殿海.可变车道的控制方法[J].吉林大学学报(工学版),2009,39(S1):98-103. 被引量:28
  • 3张卫华,陆化普,石琴,刘强.公交优先的信号交叉口配时优化方法[J].交通运输工程学报,2004,4(3):49-53. 被引量:79
  • 4赵忠杰,刘小强,谢光秋.单交通路口变相位变周期信号控制[J].长安大学学报(自然科学版),2005,25(6):70-72. 被引量:30
  • 5李洪萍,裴玉龙.基于混沌理论的交通流短时预测模型[J].昆明理工大学学报(理工版),2006,31(5):95-99. 被引量:5
  • 6RAUSANDM.系统可靠性理论:模型、统计方法及应用[M].2版.郭强,译.北京:国防工业出版社,2010.
  • 7Li Ruimin, Lu Huapu. Combined Neural Network Approach for Short- Term Urban Freeway Traffic Flow Prediction [C]//6th International Symposium on Neural Networks, Wuhan, China. Germany: Springer Verlag, 2009: 26-29.
  • 8Li Qiangwei. Short-time Traffic Flow Volume Prediction Based on Support Vector Machine with Time-dependent Structure [C]// I2MTC 2009-International Instrumentation and Measurement Technology Conference, Singapore. USA: IEEE Computer Society, 2009: 5-7.
  • 9Li Qingfu, Hu Qunfang, Zhang Peng. Application of Grey-Markov Model in Predicting Traffic Volume [C]// Proceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China. USA: Computer Society, 2007:18-20.
  • 10Han Lee D, Li Jan-Mou, Urbanik Tom. Impacts of intercycle demand fluctuations on delay [J]. Journal of Transportation Engineering (S0733-947X), 2009, 135(5): 288-296.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部