摘要
为克服原有BDI模型可计算性差以及不能处理模糊问题的弱点,提出一种基于模糊小波神经网络(FWNN)的BDI模型,FWNN用神经网络来实现模糊化、模糊承诺和去模糊化的过程,并利用小波基函数作为模糊隶属函数,网络权值和隶属函数的形状均是可学习调整的。以一对一追逃问题为背景的仿真实验验证了模型及算法的可行性。
The BDI model is not efficiently computable and not easily applicable to the domain with fuzzy. A BDI model based on fuzzy wavelet neural network (FWNN) was proposed. FWNN employed neural network to implement fuzzification, fuzzy commitment, and defuzzification, and used wavelet-based function as member function. So both the network weights and the shape of member function could be learned. The experiment with one to one agent pursuit-evasion game shows that the proposed model and its algorithm are feasible.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2009年第8期2308-2310,2325,共4页
Journal of System Simulation
基金
黑龙江省青年科技专项基金(QC06C022)
哈尔滨工程大学基础研究基金(HEUFT05068
HEUFT05021
HEUFT07022)
中国博士后科学基金(20060400809)
黑龙江省博士后基金(LRB06-305)