期刊文献+

基于粗糙集和神经网络的导弹故障诊断方法 被引量:3

Missile Autopilot Fault Diagnosis Based on Rough Set and Artificial Neural Networks
下载PDF
导出
摘要 人工神经元网络(ANN)具有本质的非线性特性、并行处理能力以及自组织自学习的能力,但单独使用ANN处理问题时,往往会存在一些缺陷。文章介绍导弹驾驶仪故障智能诊断的一种新方法:首先,利用粗糙集原理约简故障特征属性数据;其次,用带动量项的批处理BP神经网络方法对故障数据进行训练并检验;最后,将故障数据处理后输入神经网络分类器,对故障实施诊断。 Artificial neural networks have the essential nonlinear character, parallel processing ability, and the ability of self organization and self-learning. But when only using ANN to solve a problem, it often has some shortcomings. In this paper, a new intelligence fault diagnosis method on missile autopilot was presented. First, the fault attributions was reduced according to the rough set theory, the BP neural network which absorbed adding momentum ways and batch ways was trained. It made the fault diagnosis more automatically.
出处 《海军航空工程学院学报》 2009年第2期214-216,220,共4页 Journal of Naval Aeronautical and Astronautical University
关键词 粗糙集 BP神经网络 故障诊断 导弹自动驾驶仪 rough set BP neural network fault diagnosis missile autopilot
分类号 E911 [军事]
  • 相关文献

参考文献3

  • 1陈桦,程云艳.BP神经网络算法的改进及在Matlab中的实现[J].陕西科技大学学报(自然科学版),2004,22(2):45-47. 被引量:47
  • 2Ning Zhong,Juzhen Dong,Setsuo Ohsuga.Using Rough Sets with Heuristics for Feature Selection[J].Journal of Intelligent Information Systems.2001(3)
  • 3JinMao Wei.Rough set based approach to selection of node[].International Journal of Computational Cognition.2003

二级参考文献4

共引文献46

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部