期刊文献+

基于混合遗传算法的控制受限热传导系统最优控制问题求解 被引量:3

Optimal control solving of heat transfer system with input constraints by applying hybrid genetic algorithm
下载PDF
导出
摘要 混合遗传算法是用粒子群位移转移的思想改变遗传算法的变异规则,利用此算法求解控制受限热传导系统最优控制问题,获得了该问题的分段常量控制。混合遗传算法对热传导系统最优控制问题从时间和空间进行了离散,由有限差分方法得到其离散模型的递推方程,将热传导系统的积分区域划分为多段,每段的控制常量作为混合遗传算法中的基因。此算法不需要求解系统的伴随方程和计算梯度,整个求解过程易于实现,而且克服了梯度法容易陷入局部极值的缺点。应用实例证明混合遗传算法求解精度高于极大值原理算法。 A hybrid genetic algorithm (GA) was studied, in which the position displacement idea of the particle swarm optimization (PSO) was applied to change the mutation operation rule. The algorithm was applied to solve the optimal control problems of heat transfer with input constraints and the optimal piecewise-constant control was obtained. In this method, the discretization of the system from time and space and the basic function were got by finite-difference method. The time domain of heat transfer system was divided into several intervals, and the control in every interval was regarded as the gene of the hybrid CA. The algorithm can be easily realized because it does not depend on the adjoint equations and calculation gradient, and can overcome the flaw of getting into local extreme by gradient method. The results show that the algorithm enhances the solution precision compared with the maximum principle method.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期160-163,共4页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家'973'项目(2004CB318000)
关键词 混合遗传算法 热传导系统 最优控制 hybrid genetic algorithm heat transfer system optimal control
  • 相关文献

参考文献12

  • 1周明 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1996..
  • 2SHI X H, LU Y H. Hybrid evolutionary algorithms based on PSO and GA [ R ]. Australia: Proceedings of IEEE Congress on Lvolutionary Computation Canbella, 2003.
  • 3ARABAS J, MICHALEWICZ Z, MULAWKA J. GA- VaPS-a genetic algorithm with varying population size [ C]//BRIAN B, ROBERT G. The First IEEE Conference on Evolutionary Computation. Orlando Florida, USA: IEEE Press, c1994:211-219.
  • 4EIBEN A E, MARCHIORI E, VALKO V A. Evolutionary algorithms with on-the-fly population size adjustment [ R ]. Berlin Heidelberg: Springer-Verlag, 2004.
  • 5SHIX H, LIANGY C, LEE HP, et al. An improved GA and a novel PSO-GA-based hybrid algorithm [ J ]. Information Processing Letters, 2005,93:255-261.
  • 6BILCHEV G, PARMER I C. The ant colony metaphor for searching continuous design spaces [ R ]. UK: Proceedings of the AISB Workshop on Evolutionary Computation, University of Sheffield, 1995.
  • 7杨晓华,杨志峰,郦建强.蚁群加速遗传算法在水环境优化问题中的应用[J].水电能源科学,2003,21(4):42-45. 被引量:12
  • 8KENNEDY J, EBERHART R C. Particle swarm optimization[ R]. Poscataway: Proc IEEE Conf on Neural Networks, 1995.
  • 9KROHLING R A. Gaussian swarm: a novel particle swarm optimization algorithm[ R ]. Singapore: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, 2004.
  • 10KROHING R A. Gaussian swarm: a novel partical swarm optimization algorithm [ R ]. Singapore : Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, 2004.

二级参考文献8

共引文献86

同被引文献37

  • 1Christofides P D. Control oi" nonlinear distributed process systems: Recent developments and challenges [J]. AIChE Journal, 2001, 47(:3): 514 518.
  • 2Padhi R, Ali S F. An account of chronological developments in control o[ distributed parameter systems [J]. Annual Reviews in Control, 2009, 33(1): 59-68.
  • 3Alessandri A, Gaggero M, Zoppoll R. Feedback optimal con trol of distributed Darameter systems by using finite dimen sional approximation schemes[J]. 1EEE Transactions on Neural Networks and l.earning Systems, 2012, 23(6) : 984 -995.
  • 4Smyshlyaev A, Krslic M. Backstepping observers for a class of parabolic Pl)Es[J]. Systems . Control Letters, 2005,54:613 625.
  • 5Smyshlyaev A, Krstic M. Boundary Control of PI)Es: A Course on Backstepping Designs[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2008.
  • 6Krstic M, Srnyshlyaev A, Adaptive boundary conlrol for un- stable parabolic PDEs: Part I Lyapunov design[J]. IEEE Transactions on Automatic Comrol, 2008, 53(7): 1575 1591.
  • 7Smyshlyaev A, Krstic M. Adaptive boundary control for un stable parabolic PDEs: Part II. Estimation based designs [J]. Automatica, 2007, 43(9): 1543-1556.
  • 8Smyshlyaev A, Krstic M. Adaptive boundary control for un stable parabolic PDEs= Part m. Output feedback examples with swapping identifiers[J]. Automatica, 2007, 43 (9) 1557 1554.
  • 9Boskovic D M, Krstic M, Liu Weijiu. Boundary control of an uns*.able heat equation via measurement o{ domain averaged temperature[J]. IEEE Transactions on Automatic Conlrol, 200l, 46(12) : 2022-2028.
  • 10Liu Wei]iu. Boundary {eedback stabi|izalion o[ an unslab|e heat equation[J]. SlAM Journal on Control and ()ptimiza lion, 2004, 42(3): 1033 1043.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部