期刊文献+

一个关于树图的P_3-因子存在性的充要条件

A Necessary and Sufficient Condition for the Existence of P_3-factor for Trees
下载PDF
导出
摘要 图G存在pn-因子,如果G有一个全部由Pn构成的支撑子图H。给出关于树图T存在Pn-因子的一个充分必要条件,并给予证明。类比Tutte定理,得到了树图T有一个P3-因子充要条件是对任意v∈V(T)有O1(T-v)+2O(2T-v)=2,其中O(iT-v)表示T-v中阶数模3余i的分支数。在此基础上,探讨了一般图G存在P3-因子的条件。 Graph G has a Pn-factor, if G has a spanning subgraph H,of which each component is Pn. A necessary and sufficient condition for the existence of Pn-factor for trees is given and proved. It is found that a tree T has a P3-factor if and only if O1 (T-v) +2O2 (T-v) =2 for all v ∈ V (T), where Oi (T-v) is number of components which order equal i (rood 3) of T-v. Moreover, the condition for existence of P3-factor for graphs G is studied.
作者 华瑛 王晓
出处 《商洛学院学报》 2009年第2期23-25,共3页 Journal of Shangluo University
基金 商洛学院科研基金项目(07SKY021)
关键词 树图 Pn-因子 完美匹配 P3-因子 trees Pn-factor perfect matching P3-factor
  • 相关文献

参考文献10

  • 1Dunbar J E,Frick M,Bullock F.Path partition and free sets[].Discrete Mathematics.2004
  • 2Kaneko A.A necessary and sufficient condition for the existence of a path every component of which is a path of lengthat least two[].Journal of Combinatorial TheorySeries B.2003
  • 3Plummer M D.Graph factors and factorization:1985-2003:A survey[].Discrete Mathematics.2007
  • 4Akiyama J,Kano M.Factors and factorizations of graphs-a survey[].Journal of Graph Theory.1985
  • 5Bondy J A,Murty U S R.Graph Theory with Application[]..1976
  • 6S. Fujita,K. Kawarabayashib,C. L. Lucchesic,K. Otaa,M. D. Plummerd,A. Saito.A pair of forbidden subgraphs and perfect matchings[].Journal of Combinatorial Theory Series B.2006
  • 7Michel Las Vergnas.An extension of Tutte’s 1-factor theorem[].Discrete Mathematics.1978
  • 8Ando K,Egawa Y.Pathfactors in claw-free graphs[].Discrete Mathematics.2002
  • 9Lovász,L.A Note on Factor-Critical Graphs[].Studia Scientiarum Mathematicarum Hungarica.1972
  • 10Wang H.Path factors of bipartite graphs[].Journal of Graph Theory.1994

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部