期刊文献+

广义测不准关系与三维BTZ黑洞熵 被引量:5

Generalized uncertainty principle and entropy of three-dimensional BTZ black hole
原文传递
导出
摘要 通过应用在量子引力中,由广义测不准关系得出的新的态密度方程,研究三维BTZ背景下黑洞的熵.当取广义测不准关系中引入的,具有Planck量级与空间维数有关的常数λ为特定值时,得到BTZ黑洞Bekenstein-Hawking熵和修正项.由于利用新的态密度方程,在计算中不存在用brick-wall模型计算黑洞熵时出现的发散项和小质量近似.所得结论,从量子统计力学角度给出了黑洞Bekenstein-Hawking熵的修正值,使人们对黑洞熵的修正值有更深入的认识. Applying the new equation of state density motivated by the generalized uncertainty relation in the quantum gravity field,we investigate the black hole entropy on the background of three-dimensionnal BTZ.When the λ with the Planck scale,and relative to the dimensions of spacetime introduced in generalized uncertainty relation has a fixed value,we obtain the Bekenstein-Hawking entropy of BTZ black hole and the correction term.Because we have used the new equation of state density,in our results the divergence term appearing in the brick-wall model is removed,at the same time with holding the small mass approximation.Thus the correction value of the Bekenstein-Hawking entropy of the black hole is derived from the quantum statistical view.It depends the understanding of the correction value of the black hole entropy.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第4期2193-2197,共5页 Acta Physica Sinica
基金 山西省自然科学基金(批准号:2006011012)资助的课题~~
关键词 广义测不准关系 量子统计 BTZ黑洞熵 generalized uncertainty principle,quantum statistics,BTZ black hole
  • 相关文献

参考文献44

  • 1Liberati S 1997 IL Nuovo Cimento B 112 405.
  • 2Bombelli L,Rabinder K K,Joohan L, Rafael D S 1986 Phys. Rev. D 34 373.
  • 3Frolov V P,Fursaev D V 1996 Phys. Rev. D 61 3904.
  • 4Callan C G,Wilczek F 1994 Phys. Lett. B 333 55.
  • 5Zurek W H,Thorne K S 1985 Phys. Rev. Lett. 54 2171.
  • 6G't Hooft 1985 Nucl. Phys. B 256 727.
  • 7Ghosh A,Mitra P 1994 Phys. Rev. Lett. 73 2521.
  • 8Mann R B, Solodukhin S N 1996 Phys. Rev. D 54 3932.
  • 9Kenmoku M, Ishimoto K, Nandi K K, Shigemoto K 2006 Phys. Rev. D 73 064004.
  • 10Jing J,Yan M L 1999 Phys. Rev. D 60 084015.

二级参考文献90

共引文献64

同被引文献22

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部