期刊文献+

正多边形量子环自旋输运的严格解 被引量:2

Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction
原文传递
导出
摘要 研究了存在Rashba自旋轨道相互作用的正多边形量子环的自旋输运特性.采用量子网络的典型方法和Landauer-Büttiker电导公式,严格求解了电子通过正多边形量子环的散射问题,并得到了电导的解析表达式.通过数值计算和解析分析,进一步研究了量子环电导随电子波矢和自旋轨道相互作用强度变化的复杂形式,包括源于自旋轨道耦合相互作用的电导零点系列.特别地,还研究了正多边形环的边数趋近于无穷的极限情形,与直接采用圆环模型获得的结果完全一致. The quantum transportation of electron through equilateral polygonal quantum rings with Rashba spin-orbit interaction is studied.By using the typical method of quantum network and the Landauer-Büttiker formalism,we solve analytically the scattering problem of electron through any equilateral polygonal quantum ring,and obtain the relevant formula for spin transportation conductance.The characters of conductance varying with wave-vector of electron and the strength of spin-orbit interaction are investigated,and the series of zero conductance points originating from spin-orbit interaction is determined.In the limit of infinite number of borders of equilateral polygon,we prove that the formula is consistent with the results obtained directly from the circular model of quantum rings.
作者 李鹏 邓文基
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第4期2713-2719,共7页 Acta Physica Sinica
关键词 Rashba自旋-轨道相互作用 量子网络 量子输运 Rashba spin-orbit interaction,quantum network,quantum transport
  • 相关文献

参考文献43

  • 1Sakurai J J 1994 Modern Quantum Mechanics (revised Ed. ) (Boston: Addison-Wisley) p304.
  • 2Rashba E I 1960 Fiz. Tverd Tela (Leningrad) 2 1224.
  • 3Dresselhaus G, Kip A F, Kittel C 1955 Phys. Rev. 98 368.
  • 4Winkler R 2003 Spin-orbit Coupling Effects in Two-dimensional Electron and Hole Systems (Berlin, Heidelberg: Springer ) p69.
  • 5Nitta J, Akazaki T, Takayanagi H, Enoki T 1997 Phys. Rev. Lett. 78 1335.
  • 6Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488.
  • 7Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323.
  • 8Data S, Das B 1990 Appl. Phys. Lett. 56 665.
  • 9Nitta J, Meijer F E, Takayanagi H 1999 Appl. Phys. Lett. 75 695.
  • 10Egues J C, Burkard G, Loss D 2003 Appl. Phys. Lett. 82 2658.

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部