期刊文献+

运动性骨骼肌适应的分子机制 被引量:16

Molecular Mechanism of Exercise Adaptation in Skeletal Muscles
下载PDF
导出
摘要 骨骼肌显著特征是能够对外在活动的变化发生适应。大量运动诱导骨骼肌适应潜在分子机制被提出和进行研究。由收缩到分子事件中产生的机械信号转换过程中能够促使肌细胞适应,其中涉及到第一信使和第二信使上调,从而导致与运动诱导的基因表达和蛋白合成/降解的特异信号通路激活和抑制。大量潜在相关信使被提出,包括机械性牵拉、钙的流动、氧化还原电位和磷酸化势。伴随着第一信号激活,存在于哺乳细胞大量信号通路同样被激活,包括AMPK、钙调蛋白/钙调神经磷酸酶、IGF和NFκB-肿瘤坏死因子-α等信号通路。骨骼肌适应的关键调节分子的发现,能够认识运动诱导骨骼肌特异性的变化,了解这一变化过程,有助于运动训练方法的制订。 Skeletal muscle is capable of remarkable adaptations in response to external altered activities. The mechanism of numerous exercise-induced adaptation in skeletal muscle to potential molecules has been proposed and investigated. The process of converting a mechanical signal generated during contraction to a molecular event that promotes adaptation in a muscle cell involves the up-regulation of primary and secondary messengers that initiates a cascade of events that result in activation and/or repression of specific signaling pathways of exercise-induced gene expression and protein synthesis/degradation. There are numerous putative messengers emerging,including mechanical stretch,calcium flux,redox state and phosphorylation state. Following the initiation of the primary signal, numerous signaling cascades that exist in mammalian cells are activated, such as AMPK,calmodulin/ calcineurin,IGF and NFκB-tumour necrosis factor-α (TNF-α) and other signaling pathways in skeletal muscle. The discovery of key regulators of skeletal muscle adaptation can help to understand the changes of the specificity of exercise-induced skeletal muscle,and understanding this changing process is beneficial to the making-up of the training methods.
作者 马继政
出处 《首都体育学院学报》 北大核心 2009年第2期208-212,共5页 Journal of Capital University of Physical Education and Sports
关键词 骨骼肌 运动 生理性适应 skeletal muscle exercise physiological adaptation
  • 相关文献

参考文献31

  • 1Coffey V G, Hawley J A. The molecular bases of training adaptation[J]. Sports Med, 2007,37 (9) : 737-763.
  • 2Hornberger T A, Armstrong D D, Koh T J, et al. Intracellular signaling specificity in response to uniaxial vs multiaxial stretch:implications for mechanotransduction [J]. Am J Physiol Cell Physiol, 2005,288(1) : C185-194.
  • 3Schertzer J D, Green H J,Fowles J R, et al. Effects of prolonged exercise and recovery on sarcoplasmic reticulum Ca^2+ cycling properties in rat muscle homogenates[J]. Acta Physiol Stand, 2004,180:195-208.
  • 4Holloway G P,Green H J,Duhamel T A,et al. Muscle sarcoplas mic reticulum Ca^2+ cycling adaptations during 16h of heavy intermittent cycle exercise[J]. J Appl Physiol, 2005,99 (3) : 836- 843.
  • 5Chin E R. Role of Ca^2+/calmodulin-dependent kinases in skeletal muscle plasticity[J]. J Appl Physiol, 2005,99 (2) : 414-423.
  • 6Smith M A,Reid M B. Redox modulation of contractile function in respiratory and limb skeletal muscle[J]. Resp Physiol Neurohiol New Direct Exerc Physiol,2006,151(2-3):229-241.
  • 7Hardie D G,Sakamoto K. AMPK:a key sensor of fuel and energy status in skeletal muscle[J]. Physiology,2006,21(1):48-60.
  • 8Jorgensen S B, Wojtaszewski J F P, Viollet B, et al. Effects ofαAMPK knockout on exercise-induced gene activation in mouse skeletal muscle[J]. Faseb J,2005,19(9):1146-1148.
  • 9Durante P E,Mustard K J,Park S H,et al. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforrns in rat muscles [J ]. Am J Physiol Endocrinol Metab,2002,283(1) :E178-186.
  • 10Atherton P J,Babraj J A,Smith K,et al. Selective activation of AMPK-PGC-1; or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation[J]. Faseb J, 2005, 19 (7): 786-788.

同被引文献190

  • 1马继政.PGC-1 α 与运动能力[J].南京体育学院学报(自然科学版),2008,7(1):1-3. 被引量:11
  • 2沙晓林,马继政.体育项目中运动员多次大强度短距离跑的生理学认识[J].南京体育学院学报(自然科学版),2007,6(1):17-19. 被引量:6
  • 3马继政,孙飙,张爱军,牛洁,薛莲.运动负荷递增时优秀运动员心输出量和摄氧量之间关系的研究[J].南京体育学院学报(自然科学版),2007,6(2):7-10. 被引量:24
  • 4Coffey VG, Hawley JA. The molecular bases of training adaptation [J]. Sports Med, 2007, 37:737 -763.
  • 5Rose A J, Richter EA. Regulatory mechanisms of skeletal muscle protein turnover during exercise[ J]. J Appl Physiol, 2009, 106 : 1702 - 1711.
  • 6Deshmukh A, Coffey VG, Zhong Z, et al. Exercise - induced phosphorylation of the novel Akt substrates AS160 and filamin A in human skeletal muscle [ J ]. Diabetes, 2006, 55 : 1776 - 1782.
  • 7Puigserver P, Wa Z, Spiegelman BM, et al. A cold - in - ducible coactivator of nuclear receptors linked to adaptive thermogenesis [J]. Cell, 1998, 9:829 -839.
  • 8Arany Z. PGC - 1 coactivators and skeletal muscle adaptations in health and disease [ J ]. Curr Opin Genet Dev, 2008, 18:426 - 434.
  • 9Rodgers JT, Lerin C, Gerhart - Hines Z, et al. Metabolic adapta- tions through the PGC -1α and SIRT1 pathways[J]. FEBS Lett, 2008,582:46 - 53.
  • 10Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway[ J ]. Genes Dev, 2006, 20:3347 - 3365.

引证文献16

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部