期刊文献+

基于ICA的卵巢癌质谱数据分析

Mass Spectrometry Data Analysis for Ovarian Cancer Based on ICA
下载PDF
导出
摘要 卵巢癌蛋白质谱数据属于高通量数据,含有大量冗余信息,且许多重要信息都包含在高阶信息中,而独立成分分析可以从高阶信息中提取有用特征。将传统的独立成分分析融入卵巢癌蛋白质谱数据的特征提取中,并利用类信息机制监督独立成分分析过程。仿真实验结果表明,独立成分分析和监督式独立成分分析在卵巢癌蛋白质谱数据集研究过程中取得了良好的效果,识别率可达98%。 Ovarian cancer protein mass spectrometry data is a high-throughput data and has large numbers of redundant information. The important information is contained in the high-order information. Independent Component Analysis(ICA) can extract useful features from high-order information. This paper makes ICA into the process of feature extraction for ovarian cancer protein mass spectrometry data, and uses class information mechanism to supervise the process of ICA. Simulation results show both ICA and Supervised Independent Component Analysis(SICA) have gained better effect in research of ovarian cancer protein mass spectrometry data, and the recognition rate reaches 98%.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第8期211-213,共3页 Computer Engineering
关键词 独立成分分析 特征提取 散布度 质谱数据 Independent Component Analysis(ICA) feature extraction scatter degree mass spectrometry data
  • 相关文献

参考文献7

  • 1Kirby M. Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns[M]. New York, USA: John Wiley & Sons Inc., 2001.
  • 2Tom A, David F. Comparison of Statistical Methods for Classification of Ovarian Cancer Using Mass Spectrometry Data[J]. Bioinformatics, 2003, 19(13): 1636-1643.
  • 3Chiappetta P, Roubaud M C, Torresani B. Blind Source Separation and the Analysis of Microarray Data[J]. Computational Biology, 2004, 11(6): 1090-1109.
  • 4Hvarinen A, Karhunnen J. Independent Component Analysis[M]. New York, USA: John Wiley & Sons Inc., 2001.
  • 5Hvarinen A. Fast and Robust Fixed Point Algorithms for Independent Component Analysis[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 626-634.
  • 6张丽丹,黄凤岗,李先伟.基于监督式ICA的人脸识别[J].哈尔滨工程大学学报,2006,27(5):748-751. 被引量:4
  • 7Dimitri P, Berstseka S. Constrained Optimization and Lagrange Multiplier Methods[M]. New York, USA: Academic Press, 1982.

二级参考文献8

  • 1HYVARINEN A, KARHUNEN J, ERKKI O. Independent component analysis [M]. New York.. John Wiley& Sons Inc. , 2001.
  • 2HYVARINEN A. Fast and robust fixed point algorithms for independent component analysis[J]. IEEE Trans on Neural Networks, 1999,10(3): 626-634.
  • 3BARTLETT, STEWART M, LADES H, et al. Independent component representations for face recognition [J]. Proceedings of the SPIE, Conference on Human Vision and Electronic Imaging Ⅲ, 1998,3299: 528-539.
  • 4DIMITRI P, BERTSEKAS. Constrained optimization and Lagrange multiplier methods[M]. New York.. Academic Press, 1982.
  • 5SAMARIA F S. Face recognition using hidden Markov models[D]. Cambridge.. University of Cambridge, 1994.
  • 6GEORGHIADES A S, BELHUMEUR P N, KRIEG- MAN D J. From few to many: illumination cone models for face recognition under variable lighting and pose[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001,23(6) :643-660.
  • 7WECHSLER H, PPILLIPS P J, BRUCE V, et al. Em characterizing virtual eigensignatures for general purpose face recognition [J]. Computer and Systems Sciences, 1998(163) :446-456.
  • 8刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部