期刊文献+

基于Top-K项频繁模式挖掘的研究及实现

Research and Implementation of Top-k Frequent Patterns Mining
下载PDF
导出
摘要 频繁模式挖掘是关联规则、序列分析等数据挖掘任务的关键步骤,我们知道,当给定的最小支持度阈值非常小,将产生大量的频繁模式,反之,可能产生很少的模式或根本没有结果。用户有时仅对其中的部分项的频繁度感兴趣,这属于部分频繁模式挖掘问题。文章通过有效设置挖掘区间,讨论一种top-k项频繁模式挖掘问题,进而扩展到连续区间上的情况,最后将给出实验结果。 Frequent pattern mining is a key step for many tasks of data mining such as association rules mining, series analysis and so on. As we know, when the minimum support threshold is low, we may acquire large numbers of frequent patterns, Whereas we may get few or even no frequent pattern. Sometimes users are only interested in frequency about part of all items, which falls into the problem of mining part of frequent patterns. In this paper, we discuss a kind of top k frequent patterns mining and then extend it to the situation in a sequential range. Finally, we present our experiment result.
作者 胡燕 韩瑞雪
出处 《计算机与数字工程》 2009年第4期13-16,共4页 Computer & Digital Engineering
关键词 频繁模式 频繁项集 数据挖掘 frequent patterns, frequent items, data mining, Top-k
  • 相关文献

参考文献7

  • 1R Agrawal and R Srikant. Fast algorithms for mining association rules[C]. Proceedings of the 20th International Conference on Very Large Data Bases, Morgan Kaufmann, 1994:487-499
  • 2A. W. --C. Fu, R.W. W. Kwong, J. Tang. Mining N most Interesting Itemsets[C]. in Proc. of 12th International Symposium on Methodologies for Intelligent Systems (ISMIS'00), 2000,10
  • 3Y. L. Cheung, A. W. --C. Fu. Mining Association Rules without Support Threshold.. with and without Item Constraints[J]. IEEE Transactions on Knowledge and Data Engineering, 2004,9,16 (9) : 1052-1069
  • 4O. Nasraoui, C. Cardona, C. Rojas, and F. Gonzalez. TECNO--STREAMS: Tracking Evolving Clusters in Noisy Data Streams with a Scalable Immune System Learning Model[C]. in Proe. of 3rd IEEE International Conference on Data Mining (ICKM'03), 2003 : 235-242
  • 5O. Nasraoui, C. Cardona, C. Rojas, F. Gonzalez. Mining Evolving User Profiles in Noisy Web Cliekstream Data with a Sealable Immune System Clustering Algorithm [C]. in Proc. of WebKDD 2003--KDD Workshop on Web mining as a Premise to Effective and Intelligent Web Applications, 2003 :71 -81
  • 6Zaki M, Parthasarathy S, Ogihara M, Li W. New algorithms for fast discovery of association rules[C]. In: D Heckerman, et al eds. Proc of the Third Intl. Conf. on Knowledge Discovery and Data Mining (KDD'97). AAAI Press, 1997 : 283
  • 7J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidate generation[C]. In Proceeding of Special Insterest Group on Management of Date, Dallas, TX, 2000,5:1-12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部