期刊文献+

具有第Ⅱ类功能性反应的三种群捕食-食饵离散系统正周期解的存在性及全局稳定性

Existence and Global Stability of Positive Periodic Solution of Predator-prey of Three Species Discrete System with Holling Ⅱ Functional Response
下载PDF
导出
摘要 研究了具有第Ⅱ类功能性反应的三种群捕食-食饵离散系统,利用重合度理论中的连续定理及构造离散的Lyapunov函数,得到了该系统正周期解的存在及全局稳定的充分条件. In this paper, we study a predator-prey of three-species dicsrete system with Holling Ⅱ functional response. By using the continuation theorem of coincidence degree theroy and by constructing suitable Lyapunov function, sufficient conditions are obtained for the existence and global stability of positive periodic solution of the model.
作者 杨芳
出处 《广西师范学院学报(自然科学版)》 2009年第1期33-42,共10页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西师范学院青年科研基金资助(0605B005)
关键词 第Ⅱ类功能性反应 三种群捕食-食饵离散系统 正周期解 全局稳定 Holling Ⅱ functional response predator-prey of three-species discrete system positive periodic solution global stability
  • 相关文献

参考文献10

  • 1GAINES R E, MAWHIN J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin: Springer-Verlag, 1977 : 56-59.
  • 2LI Y K. Periodic solutions of a periodic delay predator-prey systems[J]. Proc Amer Math Soc, 1999, 127(5) : 1331- 1335.
  • 3SMITH H J. Periodic solutions of periodic competitive and cooperative systems[J]. SIAM J Math Anal, 1986, 17(4) : 1289-1318.
  • 4XU R, CHAPLAIN M A J, DAVIDSON F A. Periodic solutions for a predatorprey model with Holling -type functional response and time delays[J]. Applied Mathematics and Computation, 2005, 161: 637-654.
  • 5CHEN F D. Positine Periodic solutions of neutral Lotka-Volterra system with feedback control[J].Applied Mathematics and Computation, 2005, 162: 1279-1302.
  • 6FAN M, WANG K. Periodic solutions of a Discrete Time Nonautonomous Ratio-Dependent Predator-Prey System[J ]. Mathematical Computer and Modeling, 2002, 35: 951-961.
  • 7HUO H F, LI W T. Existence and global stability of periodic solutions of a discrete ratio-dependent food chain model withe delay[J]. Applied Mathematics and Computation, 2005, 162. 1333-1349.
  • 8WANG W D, LU Z Y. Global stability of discretet models of Lotka-Volterra type[J]. Nonlinear Analysis, 1999, 35: 1019-1030.
  • 9熊佐亮.关于三种群第Ⅱ类功能性反应周期系数模型的研究[J].生物数学学报,1998,13(1):39-42. 被引量:37
  • 10AGARWAL R P. Difference Equations and Inequalities, Theory, Method and Applications[M]. New York: Marcel Dekker, 2000.

二级参考文献2

  • 1陈兰荪,数学生态学模型与研究方法,1988年
  • 2Lu Zhonghua,Appl Math J Chin Univ B,1995年

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部