期刊文献+

关联规则挖掘算法的研究和应用 被引量:5

Research and application of Connection rule excavation algorithm
下载PDF
导出
摘要 文中介绍了Apriori算法,并从逐渐减少扫描的数据量和减少扫描数据库的次数两个方面对Apriori算法进行优化,介绍了AprioriTid算法和Partition算法。根据这两种算法的优势又将两者进行结合,对整个数据库采用Partition算法,将数据库分区,而在每个分区中又采用AprioriTid算法。此外,在将数据库分区时,对数据进行一个预处理,即将支持数较高的两项集尽可能地放在同一个分区中,最后将结合的结果与单纯采用一种算法的效率进行比较。 This paper introduces the Apriori Algorithm, optimizes the algorithm through the gradual reduction of the amounts of scanning data and the times of scanning database these two aspects, introduces the AprioriTid algorithm and Partition algorithm. According to the advantages of these two algorithms to combine the two again, using the Partition Algorithm for the whole database, though dividing the database into districts, each zone is used in AprioriTid algorithm. In addition, operates a data preprocessing while dividing the database into districts, that is to say, put the two sets of higher support into the same partition, and finally compares the efficiency of combining results with a simple algorithm.
出处 《微计算机信息》 2009年第12期193-194,192,共3页 Control & Automation
关键词 关联规则 APRIORI算法 APRIORITID算法 Partition算法 Connection rule Apriori algorithm AprioriTid algorithm Partition algorithm
  • 相关文献

参考文献3

二级参考文献4

  • 1龙银香.基于移动计算的数据挖掘研究[J].微计算机信息,2005,21(4):216-217. 被引量:12
  • 2Agrawal R,Imielinski T,Wami A S.Mining Association Rules Between Sets of Items in Large Databases.In:Proc.of the ACM SIGMODConference on Management of Data,Washington,D.C.,1993-05:207-216.
  • 3范明等译.数据挖掘:概念与技术.北京:机械工业出版社,2003.
  • 4U.M.Fayyad,G,Piatetsky-Shapiro.P.Smyth,and R.Uthurusamy.Advances in knowledge discovery and data mining.AAAI/MIT Press,1996.

共引文献19

同被引文献22

  • 1王占全.基于地理信息系统空间数据挖掘若干关键技术的研究[EB/OL].(2005-05-13)[2009-12-20].http://epub.cnki.net/srid2008/.
  • 2WANG Li-zhen,XIE Kun-qing,CHEN Tao. Efficient Discovery of Multilevel Spatial Association Rules Using Partitions[ J]. Information and Software Technology,2005,47 ( 13 ) : 829 - 840.
  • 3Jiawei Han, Micheline Kamber. Data Mining Concepts and Techiques [ M ]. Morgan Kaufmann Publishers, Inc. , 2001 : 120 - 150.
  • 4Cheng Q,Agterberg F P. Multifractal modeling and spatial point processes. Math Geology, 1995,27:831 - 845.
  • 5谭征兵.矿产资源GIS评价系统及成矿预测BP模型[EB/OL].(2003-09-09)[2009-12-25].http://epub.cnki.net/grid2008/.
  • 6R.Agrawal, T.Imielinski, and A.Swami. Mining associhtion iules between sets of items in large databases. In ACM SIGMOD Intei. Conf. Management of Data,May 1994.
  • 7Han J.Pei J.Mining frequent patterns without candidate generation. Weidong C,Teffrey F N,Philip A B. Proceeding 2000 ACM SIGM OD International Management of Data(SIGMOD'00).Dallas, TX:ACM Press,2000:1-12.
  • 8张云涛,龚玲.数据挖掘原理与技术.北京:电子工业出版社,2003.5-42.
  • 9LEE, W.,STOLFO,S.J.,MOK,K.W. "Mining audit data to build intrusion detection models" [J].KDD-98.
  • 10HAN,J. FU,Y. "Discovery of muhiple-level association rules from large databases" [J]. VLDB-95.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部