期刊文献+

一种新的改进的Apriori算法 被引量:6

A New Improved Apriori Algorithm
下载PDF
导出
摘要 本文通过对关联规则挖掘算法Apriori算法的分析和研究,指出了其在具体应用中存在的主要问题。提出与以往不同的改进策略:在约简数据库事务的同时,生成频繁项目集和保存具有非频繁子集候选项目集的项集,在提高频繁项目集即关联规则生成效率的同时,进一步减少了对候选项目集的重复验证。最后将改进的Apriori算法应用到一个Web交叉销售系统,并和经典的Apriori算法进行了比较,取得了较好的效果。 The paper analysed the problems of classic Apriori algorithm of association rules in practical applications by research on the algorithm , and proposed a new method which improves the classic Apriori algorithm: the new method reduces the transactions of database, as well as it forms the frequent itemsets and saves candidate itemsets that are not frequent.The result showed that it not only promotes the efficiency in generation of frequent itemsets,but also reduces the verification that is repeated in generation of candidate itemsets.At last the improved algorithm was applied in a web cross-selling system and compared with the classic Apriori algorithm,and a good effect was achieved.
出处 《微计算机信息》 2009年第12期239-241,共3页 Control & Automation
关键词 APRIORI算法 数据挖掘 Web交叉销售 Apriori Algorithm Data Mining Web Cross-Selling
  • 相关文献

参考文献9

  • 1Agrawal R,Imielinski T, Swami A. Mining Association Rules between Sets of items in Large database. In:Bunemuu P,Jajodia S eds. Proceedings of the 1993 ACM SIGMOD Conference on Management of Data. New York, NY:ACM Press, 1993.pp.207-216.
  • 2Agrawal R,Skikant R. Fast algorithms for mining association rules in large database [C].In Proceeding of the 20th International Conference on Very Large DataBases,Santiago,Chile,1994.pp.487- 499.
  • 3P. Anita and Van den P. Dirk, Constrained optimization of datamining problems to improve model performance: A direct-marketing application. Expert Systems With Applications29(3)(2005), pp.630 - 640.
  • 4Liao, Shu-Hsien Michael, Chen, Chyuan-Meei,Wu, Chung- Hsin, Mining customer knowledge for product line and brand extension in retailing. Expert Systems with Applications34 (3)(2008),pp. 1763-1776.
  • 5王瑜,刘连臣,吴澄.面向Web关联规则挖掘的快速Apriori算法[J].微计算机信息,2008,24(15):109-111. 被引量:8
  • 6邱桃荣,白小明,张丽萍.基于粒计算的Apriori算法及其在图书管理系统中的应用[J].微计算机信息,2006,22(07X):218-221. 被引量:9
  • 7王德兴,胡学钢,刘晓平,王浩.改进购物篮分析的关联规则挖掘算法[J].重庆大学学报(自然科学版),2006,29(4):105-107. 被引量:12
  • 8黄进,尹治本.关联规则挖掘的Apriori算法的改进[J].电子科技大学学报,2003,32(1):76-79. 被引量:51
  • 9邓纳姆.数据挖掘教程[M].郭崇慧,田凤占,靳晓明,译.北京:清华大学出版社,2005.

二级参考文献23

  • 1李敏.数据挖掘在辅助决策系统的应用研究[J].微计算机信息,2004,20(5):96-97. 被引量:36
  • 2李超,余昭平.基于最大模式的关联规则挖掘算法研究[J].微计算机信息,2006(02X):164-165. 被引量:20
  • 3[1]Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In Proceeding of the 20th International Conference on Very Large Databases. 1994, 487-499
  • 4[2]Jong S P, Ming S C, Philip S Y. An effective hash based algorithm for mining association rules[C]. In Proceedings of the 1995 ACM SIGMOD International Conference On Management of Data. 1995, 24(2): 175-186
  • 5[3]Jiawei H, Micheline K. Data mining: concepts and techniques[C]. Morgan, 2001, 149-158
  • 6RASKESH AGRAWAL,TOMASZ IMIEIINSKI,ARUN SWAMI.Mining Association Rules between Sets of Items in Large Databases[Z].In:Proc of ACM SIGMOD Conference on Management of Data,Washington DC,1993.207 -216.
  • 7BRIN S,MOTWANI R,SILVERSTEIN C.Beyond Market Basket:Generalizing Association Rules to Correlations[Z].In Proc.1997 ACM-SIGMOD Int.Conf.Management of Data (SIGMOD97),Tucson,AZ,1997.265-276.
  • 8AHMED K M,EL-MAKKY N M,TAHA Y.A Note on Beyond Market Basket:Generalizing Association Rules to Correlations[J].SIGKDD Exploration,2000,(1):46-48.
  • 9AGRAWAL R,SRIKANT R.Fast Algorithms for Mining Association Rules in Large Database[Z].In research Report RJ9839,IBM Almaden Research Center,San Jose,CA,June,1994.
  • 10HAN JIAWEI,KAMBER M.Data Mining - Concepts and Techniques[M].Sam Francisco:Morgan Kaufmann Publishers,2001.232-236.

共引文献79

同被引文献21

  • 1梁繁荣,余曙光,李瑛,李常度,周东,胡玲香,袁秀丽,李怡,何俐,朱蔓佳,李宁,郑重.针灸治疗贝尔麻痹临床多中心随机对照试验研究[J].中医杂志,2004,45(8):584-586. 被引量:41
  • 2李晓虹,尚晋.一种改进的新Apriori算法[J].计算机科学,2007,34(4):196-198. 被引量:26
  • 3Han J, Pei J,Yin Y, Mining frequent patterns without candidate generation [C]. In: Proceedings of the 2000 ACM-SIGMOD International Conference on Management of Data, Net York: ACM Press, 2000, 1-12.
  • 4Cheng David, Han Jiawei, Vincent T N, et al. Maintenance of Discovered Association Rules in Large Database: An Incremental Updating Technique [C]. Proc of the 12^th Int. Conf. on Data Engineering. Louisiana, USA, 1996.
  • 5Frequent Itemset Mining Implementations Repository. http://fimi. cs.helsinki.fi/, 2004.
  • 6柴华昕,王勇.Apriori挖掘频繁项目集算法的改进[J].计算机工程与应用,2007,43(24):158-161. 被引量:30
  • 7AGRAWAL R,SR IKANT R. Fast algorithms for mining association rules [C].Proc of the 20th International Conference on Very Large Data Bases, 1994.
  • 8PARK J S,CHEN M S,YU P S. Using a hash based method with transaction trimming for mining association rules [J]. IEEE Transactions on Knowledge and Data Engineering, 1997,9(5):813-825.
  • 9BRIN S, MOTWAN I R, ULLMAN .l D. Dynamic itemset counting and implication rules for market basket data[C]. In SIGMOD 1997, Proceed- ings ACM SIGMOD International Conference on Management of Data.
  • 10Agrawal R, Srikant R.Fast algorithms for mining association rules[C].Proceedings of the 1994 International Conference on Very Large Data Bases, VLDB' 94,Santiago,C bile, 1994:487 -499.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部