期刊文献+

基于支持向量机的乳腺钙化点检测算法 被引量:2

Micro-calcifications detection algorithm in mammogram based on support vector machine
下载PDF
导出
摘要 针对乳腺X线图像微钙化点检测假阳性高的问题,提出一种微钙化点检测算法。算法首先以小波与Top-hat算子相结合的方法进行钙化点粗检测,然后以支持向量机(SVM:Support Vector Machine)为工具对粗检测结果进行真钙化点与假钙化点分类。对开放乳腺图像数据库MIAS的仿真实验表明,算法的检出率超过98%,错检率不足4%,达到理想的检测效果。 To solve the problem of high false positive detection in micro-calcifications of mammogram, this paper presented a detective algorithm on micro-calcifications. The algorithm first used wavelet and Top-hat to coarse detection on micro-calcifications, and then distributed true or false calcifications on the results of coarse detect with SVM. According to the mammogram database MIAS simulation experiment, the rate of detection calcifications was more than 98%, while the false positive was less than 4% and the algorithm is effectiveness.
出处 《微计算机信息》 2009年第12期284-286,共3页 Control & Automation
关键词 微钙化点 小波 TOP-HAT SVM micro-calcifications wavelet Top-Hat SVM
  • 相关文献

参考文献8

二级参考文献42

  • 1林瑶,田捷,张晓鹏.基于模糊连接度的FCM分割方法在医学图像分析中的应用[J].中国体视学与图像分析,2001,6(2):103-108. 被引量:17
  • 2[1]cheng F,Venetsanopoulos A N.An Adaptive Morphological Filter for Image Processing.IEEE Transactions on Image Processing.Oct 1992.1(4):533-539.
  • 3[3]S.Mallat,W3L.Hwang.Singularity detection and processing with wavelets[J].IEEE Trans on IT,1992,3,38(2):617~643.
  • 4[4]CASASENT D P,SMOKELIN J S,YE A.Wavelet and gabor transforms for detection[J].OPt.Eng.,1992,31(4):1893-1898.
  • 5[5]SZU H H,SHENG Y,CHEN J.Wavelet transform as a bank of the matched filters[J].Appl.OPt.,1992,31(6):3267-3277.
  • 6Vladimir N Vapnik.An overview of statistical learning theory[J].IEEE Trans.On Neural Network,1999,10(5):988-999.
  • 7Christopher J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2:121-167.
  • 8Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995:1-15.
  • 9S R Gunn.Support Vector Machines for Classification and Regression[R].Technical Report,Image Speech and Intelligent Systems Research Group,University of Southampton,1997.
  • 10M O Stitson,J A E Weston,A Gammerman,et al.Theory of Support Vector Machines.Technical Report[R],CSD-TR-96-17.Department of Computer Science Egham,Surrey TW20 0EX,England,Royal Holloway University of London,December 31,1996.

共引文献79

同被引文献49

  • 1王光源,何群.一种基于计算机的白血病细胞治疗效果数学模型[J].计算技术与自动化,2007,26(2):119-122. 被引量:2
  • 2SONG L, WANG Q, GAG J. Microcaleification detection using combination of wavelet transform and morphology[C]. Pro- ceedings 8th Int. Conf. on Signal Processing,Guilin,2006,4: 16-20.
  • 3HALKIOTIS S, BOTSIS T, RANGOUSSI M. Automatic de- tection of clustered microcalcifications in digital mammograms using mathematical morphology and neural networks[J]. Sig- nal Processing, 2007,87 : 1559-1568.
  • 4JAMARANI S M H,REZAI-RAD G, BEHNAM H. A novel method for breast cancer prognosis using wavelet packet based neural network[C]. Proceedings of the 2005 IEEE Engineer- ing in Medicine and Biology 27th Annual Conference, Shang-hai,China, 2005 : 3414-3417.
  • 5REZAI-RAD G, JAMARANI S. Detecting microcalcification clusters in digital mammograms using combination of wavelet and neural network[C]. International Congress on Computer Graphics, New Trends, 2005 : 197-201.
  • 6YU S N, LI K Y, HUANG Y K. Detection of microcalcifica- tions in digital mammograms using wavelet filter and Markov random field model[J]. Computerized Medical Imaging and Graphics, 2006,30 : 163-173.
  • 7JIANG J, YAOA B, WASON A M. A genetic algorithm de- sign for microealcification detection and classification in digital mammograms[J]. Computerized Medical Imaging and Graph- ies,2007,31:49-61.
  • 8NIKHIL R P A L,BROJESHWAR B,PATEL S K,et al. A multi-stage neural network aided system for detection of mi- crocalcifications in digitized mammograms[J]. Neurocomput- ing, 2008,71 :2625-2634.
  • 9SHALOM B,ISAAC L,RICHARD L. Can the size of micro- calcifications predict malignancy of clusters at mammography [J]. Aead Radiol, 2002,9 : 18-25.
  • 10JIANG Y,NISHIKAWA R M, WOLVERTON E C E, et al. Malignant and benign clustered microealcifications: Automated feature analysis and classification[J]. Radiology,1996, 198: 671-678.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部