期刊文献+

鲁棒的实时多车辆检测与跟踪系统设计 被引量:4

A Robust System for Real-time Multiple-Vehicle Detection and Tracking
下载PDF
导出
摘要 场景中的运动阴影导致多目标粘连,车辆间的相互遮挡使得跟踪识别困难。本文针对这两个影响实时车辆检测与跟踪系统性能的主要因素,采用基于无偏卡尔曼滤波器(UKF)的方法为场景背景建模,提取出运动区域,再通过边缘特征检测出场景中的运动阴影,然后利用角点信息将目标与阴影分离;提出了一种基于运动预测框的目标跟踪算法,将它与基于车辆平行四边形轮廓的遮挡分割方法结合,构建了多车辆目标的实时跟踪系统,并用实验验证了它的实用性与鲁棒性。 Moving objects in the video images may be connected by moving shadows, and vehicles occlusion would bring trouble to tracking and recognition. In order to solve these problems in the construction of a robust vehicle tracking and recognition system, an unscented Kalman filter (UKF) based method is adopted to model the scene background and extract the moving areas. Then the moving shadow areas are detected through edge feature and separated from the objects using corner point information. Movement estimation frame based tracking method is proposed, and combined with parallelogram contour based occlusion segmentation method to realize realtime multi-vehicle tracking. Experimental results demonstrated its practicality and robustness.
出处 《信号处理》 CSCD 北大核心 2009年第4期607-612,共6页 Journal of Signal Processing
基金 中科院自动化所-中科大智能科学与技术联合实验室自主研究课题基金(A0602)
关键词 目标跟踪 遮挡分割 阴影检测 背景提取 object tracking, occlusion segmentation, shadow detection, background extraction
  • 相关文献

参考文献9

  • 1D. Koller, K. Danilidis, H. H. Nagel, Model-Based Object Tracking in Monocular Image Sequences of Road Traffic Scenes [ J ], International Journal of Computer Vision,1993,10(3) : 257-281.
  • 2E. Salvador, Cast shadow segmentation using invariant color features [ J ], Computer Vision and Image Understanding, 2004:238-259.
  • 3R. Cuechiara, Improving Shadow Suppression in Moving Object Detection with HSV Color Information[ C ], Intel Trans-portation System Conf, 2001:334-339.
  • 4Angie. W. K. So, Kwan-Yee. K. Wong, Ronald. H. Y. Chung, Shadow Detection for Vehicle by Locating the Ob- ject Shadow Boundary[ C] , lASTED Conference on Signal and Image Processing, 2005:315-319.
  • 5Dockstader, Multiple Camera Tracking of Interacting and Occluded Human Motion [ C ] , Proc. IEEE, 2001, 89 (10) : 1441-1455.
  • 6Tao Yang, Stan Z Li, Quan Pan, Jing Li, Real-time Multiple Objects Tracking with Occlusion Handling in Dynamic Scenes[ C], IEEE Computer Vision and Pattern Recognition Conference, San Diego, USA, June, 2005.
  • 7H. Tao, H. S. Sawhney, R. Kumar, Dynamic Layer Repre-sentation with Applications to Tracking[ C ], Computer Vision and Pattern Recognition conference, 2000, 2: 134- 141.
  • 8Clement Churl Cheong Pang, William Wai Leung Lam, Nelson Hon Ching Yung,A Novel Method for Resolving Vehicle Occlusion in a Monocular Traffic-Image Sequence [ J ], Trans on Intelligent Transportation Systems, 2004,3:129- 141.
  • 9Shunsuke Kamijo, Yasuyuki Matsushita, Occlusion Robust Vehicle Tracking for Behavior Analysis Utilizing, Spatio- Temporal Markov Random Field Model[ C], IEEE Intelligent Transportation Systems Conference, Dearborn, USA, Oct, 2000.

同被引文献27

  • 1皮燕妮,史忠科,黄金.智能车中基于单目视觉的前车检测和跟踪[J].计算机应用,2005,25(1):220-223. 被引量:13
  • 2郁梅,王圣男,蒋刚毅.复杂交通场景中的车辆检测与跟踪新方法[J].光电工程,2005,32(2):67-70. 被引量:23
  • 3Marecenaro L, Ferrari M, Marchesottl L. Multiple Object Tracking under Heavy Occlusions by Using Kalman Filter Based on Shape Matching. IEEE International Conference on Image Processing, Rochester, New York, USA, 2002:341- 344.
  • 4Natan E Robust Tracking of position and velocity with kalman snakes. IEEE Trans. on Pattern Analysis and Matching Intelligence, 1999,22(5):564-569.
  • 5Galvin B, Mccane B, Novins K. Visual Snakes for Occlusion Analysis. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, USA, 1999: 294-299.
  • 6Nguyen HT, Marcel W. Occlusion Robust Adaptive Template Tracking. Proc. of 8th IEEE international Conference on Computer Vision, Vancouver, Canada, 2001: 678-683.
  • 7Dockstader. Multiple Camera Tracking of Interacting and Occluded Human Motion. Proc. IEEE, 2001,89(10):1441- 1455.
  • 8Hu WM, Hu M, Zhou X. Principal axis-based correspondence between multi-cameras for people tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006,28(4): 663-671.
  • 9Wang Junxian,Bebis G,Miller R.Robust video-based surveil- lance by integrating target detection with tracking[C]//Pro- ceedings of the 2006. Conference on Computer Vision and Pattern Recognition Workshop (CVPRW ' 06), 2006.
  • 10Kun A J.Traffic monitoring with computer vision[C]//7th International Symposium on Date of Conference on Applied Machine Intelligence and Informatics,2009.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部