期刊文献+

马克斯克鲁维酵母菌发酵过程的软测量

Soft Sensor Modeling for Kluyveromyces Marxianus Fermentation Process
下载PDF
导出
摘要 针对马克斯克鲁维酵母菌生长发酵环境的复杂性和高度非线性,提出采用最小二乘支持向量机建立马克斯克鲁维生长发酵条件的预测模型,以四个主要影响因素温度、时间、PH值、培养基中葡萄糖含量为输入,细胞生物量为输出。通过预测在一定影响因素下的细胞生物量,从而找到该酵母菌最佳的发酵条件。仿真实验结果表明该方法具有建模速度快、预测精度高、操作简便等优点,不仅克服了常规的BP预测模型的不足,而且性能优于标准支持向量机预测模型。 Aiming at the complexity and high non-linearity of Kluyveromyees Marxianus fermentation process, a novel model based on least square support vector machine was proposed to pre-estimate the optimal fermentation condition. We used the main factors: temperature, time, PH, dextrose as input of prediction model, and cell life-form quantity as output. The prediction roodel will pre-estimate the cell life-form quantity in the given condition, by doing so we can easily find out the optimal fermentation condition. Experiment results showed that our proposed model method has the advantage of quick speed, high precision, simpleness and so on; it also performed more outstandingly than traditional SVM.
出处 《微计算机信息》 2009年第13期271-273,共3页 Control & Automation
关键词 马克斯克鲁维酵母菌 发酵 最小二乘支持向量机 预测模型 细胞生物量 Kluyveromyces Marxianus fermentation least square support vector machine prediction model cell life-form quantity
  • 相关文献

参考文献9

  • 1金世林.Ancient but New-Style Milk Bevetage-Kefir[N].CHINA DAIRY INDUSTRY, 1999,27(12).
  • 2Becker T, Enders T, Delgado A. Dynamic neural networks as a tool for the online optimization of industrial fermentation [J]. Bioprocess Biosyst Eng. (S 1615-7591), 2002, 24(2):347-354
  • 3V. N. Vapnik. The Nature of Statistical Leaning Theory [M]. Springer, New York, second edition, 2000
  • 4于振亚,王闻侠,潘丰.模糊支持向量机在青霉素发酵中的应用[J].微计算机信息,2007,23(19):300-302. 被引量:7
  • 5胡艳国,武友新,江恭和.支持向量机在GDP回归预测中的应用研究[J].微计算机信息,2007,23(33):17-18. 被引量:8
  • 6Guo Yunchuan, Xu Yuehang, Xu Ruimin, Yan Bo. A Support Vector Regression Nonlinear Model for SiC MESFET [C]. EDST 2007, Page(s):153 - 156
  • 7Ming-guang ,Zhang Zhan-ming, Li Wen-hui. Study on Least Squares Support Vector Machines Algorithm and its Application [C]. ICTAI' 05,2005, Page(s):273-276
  • 8Bing-Yu Sun, De-Shuang Huang. Least squares support vector machine ensemble [J].Neural Networks, 2004. Volume 3, Page(s): 2013 2016
  • 9常玉清,王福利,王小刚,吕哲.基于支持向量机的软测量方法及其在生化过程中的应用[J].仪器仪表学报,2006,27(3):241-244. 被引量:28

二级参考文献19

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部