期刊文献+

复合编码支持向量机预测蛋白质二级结构

Predicting the secondary structure of protein based on complex coding method and Support Vector Machine
下载PDF
导出
摘要 蛋白质结构与功能一直是生命科学的研究重点。尽管蛋白质二级结构的预测已得到广泛的应用,但其预测的精度一直受到算法的制约。在本文中,采用复合编码代替传统的氨基酸编码方式,结合氨基酸疏水性对蛋白质结构的影响,提出一种新的支持向量机算法。使用7倍交叉验证表明,本算法提高了二级蛋白质结构预测的准确性,并节约了计算资源。 The structure and function of proteins are sustained largely by different types of studies among life science. Although the prediction of protein secondary structure was application and perform many biological functions that are essential for sustaining life, however, the predicted precision still were inhibited by algorithm. In this paper, a novel Support Vector Machine (SVM) were de- signed for predicting the secondary structure of protein, which use complex coding methods to replace PSSM amino acid coding ways, and integrate the hydrophobic of amino acid into protein structure. The results based on 7 Cross-Validation indicated that this algorithm can improve the accuracy of predictor, and reduce the computing resource.
出处 《微计算机信息》 2009年第13期276-278,共3页 Control & Automation
基金 基金申请人:马文丽 项目名称:基因组研究与基因分离中DNA阵列技术 基金颁发部门:国家自然科学基金委(39880032)
关键词 复合编码 二级结构 三元支持向量机 交叉验证 complex coding secondary structure TSVM cross-validation
  • 相关文献

参考文献14

  • 1Wright, P.E. and H.J. Dyson, Intrinsically Unstructured Proteins: Re-assessing the Protein Structure-Function Paradigm. J. Mol. Biol., 1999. 293. 321-331.
  • 2丁彦蕊,蔡宇杰,孙俊,须文波.贝叶斯方法在蛋白质耐热性分类中的研究[J].微计算机信息,2007(03S):308-310. 被引量:1
  • 3王守觉,周凌飞.基因表达数据分析中的特征基因提取[J].微计算机信息,2008,24(9):193-194. 被引量:3
  • 4Bontempi, G., a blocking strategy to improve gene selection for classification of gene expression data IEEE/ACM transaction on computational biology and bioinformatics, 2007.4(2). 8.
  • 5Jian Guo , H.C., Zhirong Sun , Yuanlie Lin a novel method for protein secondary structure prediction using Dual-Layer SVM and Profiles. PROTEINS: Structure,Functio,Bioinformatics 2004. 54. 6.
  • 6Vapnik, I.G.J.W.S.B.V., gene selection for cancer classification using support vector machines. Machine Learning 2002. 46. 34.
  • 7Chinsheng Yu , Yuching Chen , C.L., JennKang Hwang prediction of protein subcellular localization. PROTEINS: Structure , Functio, Bioinformatics, 2006. 64. 9.
  • 8Burkhard Rost , C.S., prediction of protein secondary structure at better than 70% accuracy. J.Mol.Biol, 1993. 232. 16.
  • 9Juwen Shen , J.Z., Xlaomin Luo predicting protein -protein interactions based only on sequences information. PNAS, 2007. 104(11). 5.
  • 10Sujun Hua , Z.S., a novel method of protein secondary structure prediction with high segment overlap measure: suport vector machine approach. J.Mol.Biol, 2001. (2001) 308. 11.

二级参考文献42

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部