摘要
设{Xk,1≤k≤n}独立同分布,X(1),X(2),…,X(n)为其顺序统计量.当Xk服从参数为σ(σ>0)的瑞利分布时,得到了(X(1),X(2),…X(n))的联合概率密度函数,以及X(1)和X(n)的密度函数.从而进一步得到X(1)和X(n)的数学期望与方差的表达式.此外还证明了X(1),X(2)-X(1),…,X(n)-X(n-1)不独立,且不同分布.
Set {Xk,1≤k≤n} is independent and identical distributions, X(1),X(2),…,X(n) are their order statistics. When Xk is Rayleigh distribution with parameteσ(σ〉0), the joint probability density function of (X(1),X(2),…X(n))and the density functions of X(1) and X(n) are obtained. Therefore the representation formulas of the mathematical expectation and variance of X(1) and X(n) are obtained. What's more, proving that X(1),X(2)-X(1),…,X(n)-X(n-1) are not independent and not identical distributions.
出处
《怀化学院学报》
2009年第2期11-15,共5页
Journal of Huaihua University
关键词
瑞利分布
顺序统计量
数学期望
方差
Rayleigh distribution
order statistic
mathematical expectation
variance