期刊文献+

基于最大流的路网结构优化 被引量:8

Optimization of Road Network Structure Based on Maximum-Flow Theory
下载PDF
导出
摘要 用组合图论法构造道路网络的赋权有向图,分析路网结构的均衡性,确定造成路网不均衡的关键路段.利用网络可行流的平衡关系,以流等价和点守恒原则为约束条件,建立网络最大流模型.根据最大流最小割定理,用割集矩阵法求网络的最大流.网络流量最大时,那些流量饱和的路段即为关键路段.增加关键路段的通行能力,即可增加路网的通行能力. Following the combination graph theory, a road network was described as a weighted discrete graph to analyze the structural equilibrium of the road network and recognize the critical links that cause non-equilibrium of the road network. A maximum-flow model was derived based on equilibrium of feasible flows in the network, and the model is subjected to the flow equivalence and point conservation. The maximum flows of the links in the network are determined through cutset matrix based on the max-flow min-cut theorem. The critical links are those with saturated flows. Increasing the traffic capabilities of the critical links will increase that of the road network.
出处 《西南交通大学学报》 EI CSCD 北大核心 2009年第2期284-288,共5页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(50778142)
关键词 路网 最大流 割集 优化 均衡 road network maximum flow cutset optimization equivalence
  • 相关文献

参考文献8

二级参考文献27

  • 1陆建,王炜.城市道路网规划指标体系[J].交通运输工程学报,2004,4(4):62-67. 被引量:58
  • 2石飞,江薇,王炜,陆建.基于土地利用形态的交通生成预测理论方法研究[J].土木工程学报,2005,38(3):115-118. 被引量:38
  • 3Yang H, Bell M G H.Models and Algorithms for Road Design:A Review and Some New Developments [J] .Transport Review, 1998,18 (3) : 257- 278.
  • 4Friesz T L.Transportation Network Equilibrium, Design and Aggregation:Key Developments and Research Opportunities [ J ] .Transportation Research, 19A (5/6) : 413 - 427.
  • 5Abdulaal M,LeBlanc L J. Continuous Equilibrium Network Design Models [J] .Transportation Research, 1979, 13B (1): 19-32.
  • 6Suwansirikul C, Friesz T L, Tobin R L.Equilibrium Decomposed Optimization: A Heuristic for Continuous Equilibrium Network Design Ptoblenl [J] .Transportation Science, 1987, 21 (4): 254-263.
  • 7Friesz T L, Cho H J, Mehta N J, To,bin R L, Anandalingam G.A Simulated Annealing Approach to Network Design Pteblem with Variational Inequality Constraints [J] Transportation Science,1992,26(1):18- 6.
  • 8邢文训 谢金星.现代优化计算方法[M].北京:清华大学出版社,2001..
  • 9Braess, D. Uber ein paradoxen der verkehrsplaning [M].Unternehmensforschung 82, 1968:446~455
  • 10Gao, Z. Y., and Song, Y. F. A Reserve Capacity Model of Optimal Signal Control with User-equilibrium Route Choice [J] . Transportation Research 36B, 2002:313~323

共引文献105

同被引文献64

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部