期刊文献+

扩展有限元方法计算多夹杂问题时圆形夹杂与四边形单元的几何关系 被引量:2

Geometrical relation between circular inclusion and quadrangular element for solving multi-inclusions problem by XFEM
下载PDF
导出
摘要 用扩展有限元法XFEM(Extended Finite Element Method)解决夹杂问题时,夹杂与基质的界面把单元分成若干部分。求单元刚度矩阵时,需要分别在这各个部分求积分。找到便于程序编制的描述各积分区域几何形状的方法是亟待解决的问题。本文把各积分区域的形成过程看成是圆对四边形的多次切割。考虑切剩区域与圆的关系时,把不完整的边仍看作完整的边,把切剩区域看成是四边形或是切去一两条边的四边形。采用排列组合的方法,把它们与圆的所有位置关系列了出来。 When solving inclusion problem by the Extended Finite Element Method (XFEM), an element is split into many regions by the interface between inclusions and matrix. In order to calculate element stiffness matrix, integral in these regions is necessary. The urgent problem to be solved is to find a convenient method to describe integral regions for programming. The process of forming integral regions is taken as circles repeatedly splitting a quadrangle. Geometrical relation between remained region and circles is analyzed. In the process, broken sides are substituted by original sides, and remained region is substituted by quadrangle that discards no or some sides. All possible geometrical relations between circle and remained regions are listed through permutation and combination.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第2期180-187,共8页 Chinese Journal of Computational Mechanics
基金 国家“973”(2002CB412703) 国家自然科学基金重点(504334020) 国家自然科学基金(50504009,10472121) 国家自然科学基金面上基金(50374042)资助项目
关键词 扩展有限元 夹杂 切剩区域 四边形单元 XFEM(Extended Finite Element Method) inclusion remained region quadrangular element
  • 相关文献

参考文献3

  • 1MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999,46 : 131-150.
  • 2李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:133
  • 3SUKUMAR N, CHOPP D L, MOES N, et al. Modeling holes and inclusions by level sets in the extended finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2001,190 6183-6200.

二级参考文献103

  • 1Ortiz M, Leroy Y, Needleman A. A finite element method for localized failure analysis. Computer Methods in Applied Mechanics and Engineering, 1987, 190:3647~3672
  • 2Belvtschko T, Fish J, Engelmann B E. A finite element withembedded localization zones. Computer methods in Applied Mechanics and Engineering, 1988, 70:59~89
  • 3Dvorkin E N, Cuitino A M, Gioia G. Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions. International Journal for Numerical Methods in Engineering, 1990, 30:541~564
  • 4Lotfi H R, Sheng P B. Embedded representations of fracture in concrete with mixed finite elements. International Journal for Numerical Methods in Engineering, 1995, 38:1307~1325
  • 5Simo J C, Oliver J, Armero F. An analysis of strong discontinuities induced by strain softening in rate-independent in elastic solids. Computational Mechanics, 1993, 12:277~296
  • 6Simo J C, Oliver J. Modeling strong discontinuities in solid mechanics by means of strain softening constitutive equations. In: Mang H, Bicanic N, de Borst R, eds. Computational Modeling of Concrete Structures. Pineridge:Swansea, 1994. 363~372
  • 7Armero F, Garikipati K. An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. International Journal of Solids and Structures, 1996,33:2863~2885
  • 8Sluys L J, Berabds A H. Discontinuous failure analysis for model-Ⅰ and model-Ⅱ localization problems. International Journal of Solids and Structures, 1998, 35:4257~4274
  • 9Larsson R, Runesson K. Element-embedded localization band based on regularized displacement discontinuity. ASCEJournal of Engineering Mechanics, 1996, 12:402~411
  • 10Larsson R, Steinmann P, Runesson K. Finite element embedded localization band for finite strain plasticity based on a regularized strong discontinuity. Mechanics of CohesiveFrictional Materials, 1999, 4:171~194

共引文献132

同被引文献78

引证文献2

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部