期刊文献+

粘弹性梁1∶2内共振的混沌运动 被引量:2

Chaotic Motion of Axially Moving Viscoelastic Beam with 1∶2 Internal Resonance
下载PDF
导出
摘要 利用哈密尔顿原理在积分型本构模型描述基础上建立粘弹性移动梁的控制方程。利用多尺度法和Galerkin离散法得到轴向运动粘弹性梁面内1∶2内振动的平均方程。数值模拟方法研究轴向运动粘弹性梁系统在不同参数下的多脉冲跳跃振动,绘出轴向运动粘弹性梁面内横向振动多脉冲跳跃振动的相图及对应的波形图。 Utilizing Hamihon's principle and the constitution relations in an integral form, the governing equations of motion for an axially moving viscoelastic beam is derived. Then, using the method of multiple scales, the averaged equation for the viscoelastic beam under the case of 1 : 2 internal resonance is obtained. By means of Galerkin's approac, the partial differential governing equation is solved. The muhi-impuls jumping vibration of the beam is analyzed numerically. And the crresponding phase diagrams and wave form diagrams are plotted.
作者 范国敏
出处 《噪声与振动控制》 CSCD 北大核心 2009年第2期51-54,共4页 Noise and Vibration Control
基金 华北科技学院科研基金资助2005(28-B)
关键词 振动与波 粘弹性移动梁 积分型本构关系 混沌运动 vibration and wave moving viscoelastic beam constitutive relation in an integral form chaotic motion
  • 相关文献

参考文献9

  • 1Oz H R , Pakdemirli M. Vibrations of an axially moving beam with time - dependent velocity [ J ] . J sound Vibration , 1999 ,227 (2) :239 -257.
  • 2Oz H R , Pakdemirli M, Boyaci H. Non -linear vibrations and stability of an axially moving beam with time2dependent velocity [ J] . Int J Nonlinear Mech , 2001 , 36:107 - 115.
  • 3Ozkaya E , Pakdemirh M. Vibrations of an axially accelerating beam with small flexural stiffness [ J ] . J Sound Vibration , 2000 , 234 (3) :521 - 535.
  • 4Malynowski K, Kapitaniak T. Kelvin- Voigt versus Burgers internal damping in modeling of axially moving viscoelastic web [ J ] . Int J Non - linear Mech , 2002 , 37 : 1147 - 1161.
  • 5Chen LQ, Yang XD and Cheng CJ. Dynamic stability of an axially accelerating viscoelastic beam [ J ] . European Journal of Mechanics A/Solids, 2004,23:659 - 666.
  • 6Chen LQ, Yang XD. Steady - state response of axially moving viscoelastic beam with pulsating speed: comparison of two nonlinear models [ J] . International Journal of Solids and Structures, 2005,42 ( 1 ) : 37 - 50.
  • 7Yang XD, Chen LQ. Bifurcation and chaos of an axially accelerating viscoelastic beam [ J ]. Chaos, Solitons and Fractals,2005,23 : 249 - 258.
  • 8冯志华,胡海岩.直线运动柔性梁非线性动力学——主参数共振与内共振联合激励[J].振动工程学报,2004,17(2):126-131. 被引量:31
  • 9杨晓东,陈立群.粘弹性变速运动梁稳定性的直接多尺度分析[J].振动工程学报,2005,18(2):223-226. 被引量:15

二级参考文献11

  • 1Pasin F. Ueber Die Stabilitat der Beigeschwingungen von in Laengsrichtung Periodisch Hin und Herbewegten staben [ J ]. Ingenieur-Archiv, 1972,41 : 387-393.
  • 20zkaya E. Pakdemirli M. Vibrations of an axially accelerating beam with small flexural stiffness [ J ]. J.Sound Vib., 2000,234:521-535.
  • 3Oz H R, Pakdemirli M. Vibrations of an axially moving beam with time dependent velocity[ J ]. J. Sound Vib. ,1999,227:239-257.
  • 4Oz H R. On the vibrations of an axially traveling beam on fixed supports with variable velocity[ J ]. J.Sound Vib. ,2001,239:556-564.
  • 5Wickert J A, Mote C D Jr.. Current research on the vibration and stability of axially moving materials[ J ].Shock Vib. Dig. ,1988,20:3-13.
  • 6Abrate A S. Vibration of belts and belt drives [ J ].Mech. Mach. Theory, 1992,27(6):645-659.
  • 7Chen L Q, Yang X D, Cheng C J. Dynamic stability of an axially accelerating viscoelastic beam[ J ]. Euro J Mech. A/Solid, 2004,23 : 659-666.
  • 8Nayfeh A H. Introduction to Perturbation Techniques[ M ]. New York: Wiley, 1981.
  • 9冯志华,胡海岩.内共振条件下直线运动梁的动力稳定性[J].力学学报,2002,34(3):389-400. 被引量:56
  • 10冯志华,胡海岩.受轴向基础激励悬臂梁非线性动力学建模及周期振动[J].固体力学学报,2002,23(4):373-379. 被引量:14

共引文献41

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部