期刊文献+

二状态批量到达的离散时间排队系统 被引量:1

Analysis of discrete-time queuing system with two state batch arrival
下载PDF
导出
摘要 讨论了离散时间状态下的二状态批量到达排队系统,推广了经典的离散时间排队模型.考虑在单个服务台的情形,假设二类顾客的批次到达分别服从不同参数的几何分布,二类顾客的服务时间也服从几何分布,使用嵌入Markov链的方法,分析得到了该随机排队系统的队长、等待队长、等待时间以及忙期等关键指标的分布或母函数.这些结论与经典排队系统中相应的结论在形式上十分相似,并将经典排队系统作为其特例,从而推广了随机排队系统的研究框架. The discrete-time queuing system with two state batch arrival is discussed on the basis of classical queuing system. On the assumption that a single server provides service to the customers in the system, and the batch arrival of the two different customers submits to the geometrical distribution, and the service time also depends on the geometrical distribution, using the method of embedded the Markov chain, the distribution functions of the queue length and the waiting queue length were described. These conclusions are similar to classical model which to be as a special case, and promote the framework of the random queuing system.
作者 王浩华
出处 《西安工程大学学报》 CAS 2009年第1期134-137,共4页 Journal of Xi’an Polytechnic University
关键词 排队系统 离散时间 二状态批量到达 几何分布 queuing system discrete-time two state batch arrival geometrical distribution
  • 相关文献

参考文献5

  • 1MEISLING T.Discrete time queuing theory[J].Opns Res,1958(6):96-105.
  • 2HUNTER J.Mathematical technique of applied probability (Vol.2)[M].New York; Academic Press,1993.
  • 3M Ross.Stochastic processes[M 1.2nd ed.New York; John Wiley&Sons,1997.
  • 4KLEINROCK L,GAIL R.Queuing system:problems and solunonsfM].New Yoik:John Wiley&Sons,1996.
  • 5王浩华,刘次华.二状态到达的离散时间排队系统模型[J].统计与决策,2006,22(17):11-12. 被引量:2

共引文献1

同被引文献14

  • 1NORP. 3GPP TS 22. 368 V1.0.0. Service Requirements for Machine-Type Communications; Stage 1 (Release 10)[S]. [s. l] :TSG/WG,2009.
  • 2FERING HUEI-WEN, CHANG JIN-FU. Connection-Wise End to End Delay Analysis in ATM Networks[J].Ieice Trans. Commun, 2000 (83) : 659-671.
  • 3FERING H W,CHANG J F. Departure Processes of BMAP/G/1 Queues [J]. Queueing Systems,2001,39:109-135.
  • 4PARK D, PERROS H G. Approximate Analysis of Discrete-Time Tandem Queueing Networks with Customer Loss[C]//Proc IEEE GLOBE-COM' 92. [s.l]: CGU, 1992 : 1503-1507.
  • 5PARK D,PERROS H G, YAMASHITA H. Approximate Analysis of Discrete-Time Tandem Queueing Networks with Bursty and Correlated Input Traffic and Customer Loss [J]. Oper Res Lett, 1994,15(2):95-104.
  • 6LEE, HO WOO,PARK,et al. A New Approach to the Queue Length and Waiting Time of BMAP/G/1 Queues[J]. Department of Syst, Computers and Operations Research, 2003,30(13) : 2021-2045.
  • 7SAFFER ZSOLT,TELEK MIKLoS. Analysis of BMAP/G/1 Vacation Model of Non-M/G/1-Type[C]///Computer Performance Engineering 5th European Performance Engineering Workshop. Berlin:Springer Verlag,2008:212 226.
  • 8WU KAN, MCGINNIS LEON F,ZWART BERT. Approximating the Performance of a Batch Service Queue Using the M/Mk/1 Model[J]. IEEE Transactions on Automation Science and Engineering, 2011,8(1) : 95-102.
  • 9KIM CHESOONG,DUDIN ALEXANDER,DUDIN SERGEY. A Queueing System with Batch Arrival of Customers in Sessions[J]. Compnters & Industrial Engineering, 2012,64(4) : 890-897.
  • 10HUO Zhan-qiang,JIN Shun fu, TIAN Nai-shuo, et al. Modeling and Performance Evaluation of the Sleep Mode in the IEEE 802.16e Wireless Networks with Self-Similar Traffie[J]. Journal of China Universities of Posts and Telecommunications,2009,16(4) :34 41.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部