期刊文献+

基于改进遗传算法的多业务组播系统跨层功率分配方案 被引量:1

Improved genetic algorithm based cross-layer power allocation scheme in multicast systems with multi-service
下载PDF
导出
摘要 结合数据链路层的队列状态信息(QSI)和物理层的信道状态信息(CSI),定义了系统的吞吐量系数和公平性系数,建立组播系统功率分配的离散速率集模型.对遗传算法的初始群体产生、选择、交叉和变异等算子进行改进,形成改进遗传算法;利用改进遗传算法进行动态功率分配和跨层优化.数值仿真结果表明:改进遗传算法能够取得几乎最优的队列时延性能;选取不同的权重对系统吞吐量性能和公平性性能产生重要影响;改进遗传算法获得的系统吞吐量系数和公平性系数在不同场景下较之功率固定分配算法至少提高0.15. A power allocation scheme with multi-service in multicast systems is proposed. From a cross-layer perspective, system throughput coefficient and fairness coefficient are defined taking both queue state information (QSI) in data-link layer and channel state information (CSI) in physical layer into consideration. Then, an optimal power allocation model based on discrete rates is established. The generating of initial population, selecting operator, crossover operator and mutation operator in genetic algorithm are improved to make up an improved genetic algorithm to conduct power allocation. Simulation results show that improved genetic algorithm can obtain almost the best queue delay performance and different weighs influence the system throughput coefficient and fairness coefficient significantly. System throughput coefficient and fairness coefficient obtained by improved genetic algorithm increase more than 0. 15 compared with fixed power allocation algorithm in different simulation scenes.
作者 唐苏文 陈明
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期211-215,共5页 Journal of Southeast University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)资助项目(2007AA01Z207) 东南大学移动通信国家重点实验室研究课题资助项目(2008A06)
关键词 功率分配 组播系统 跨层优化 改进遗传算法 队列状态信息 信道状态信息 power allocation multicast system cross-layer optimization improved genetic algorithm queue state information channel state information
  • 相关文献

参考文献10

  • 1Grandhi S, Vijavan R, Goodman D, et al. Centralized power control in cellular radio systems[ J]. IEEE Trans Vehicular Technology, 1993,42 (4) :466 - 468.
  • 2Saraydar C U, Mandayarn N B, Goodman D J. Efficient power control via pricing in wireless data networks [ J]. IEEE Trans Communication, 2002, 50(2) : 291 - 303.
  • 3Xiao M, Shroff N B, Edwin K P. A utility-based power-control scheme in wireless cellular systems[J].IEEE/ACM Trans Networking, 2003, 11 (2) : 210 - 221.
  • 4Koskie S, Gajic Z. A Nash game algorithm for SIRbased power control in 3G wireless CDMA networks [ J ]. IEEE/ACM Trans Networking, 2005, 13 ( 5 ) : 1017 - 1026.
  • 5Kim J Y, Kwon T, Cho D H. OFDM resource allocation scheme for minimizing power consumption in multicast systems [ C ]//IEEE 64th Vehicular Technology Conference. Quebec, Canada, 2006 : 1 - 5.
  • 6Du Q, Zhang X. Adaptive power and rate allocation for mobile multicast throughput optimization over fading channels in wireless networks[ C ]//Computer Communications and Networks 15th International Conference. Washington, USA, 2006: 261 - 266.
  • 7Man K F, Tang K S, Kwong S. Genetic algorithms. concepts and applications (in engineering design) [J].IEEE Trans Industrial Electronics, 1996, 43 (5) :519 - 534.
  • 8Zhou J, Chen J, Kikuchi H, et al. Convergence rate evaluation of a DS-CDMA cellular system with centralized power control by genetic algorithms [ C ]//Wireless Communications and Networking Conference. Orlando, USA, 2002 : 177 - 182
  • 9Alias M Y, Chen S, Hanzo L. Genetic algorithm assis-ted minimum bit error rate multiuser detection in multiple antenna aided OFDM [ C ]//IEEE 60th Vehicular Technology Conference. Los Angeles, CA, USA, 2004 : 548 - 552.
  • 10Reddy Y B, Phoha V V. Genetic algorithm approach for resource allocation in multi-user OFDM systems [ C ] // Communication Systems Software and Middle ware 2nd International Conference. Bangalore, India, 2007:1 -6.

同被引文献13

  • 1Li Y, Jing Z H, Wang J P, et al. On the outage prohahifity of MBSFN in correlated shadow fading[C]// International Conference on Wireless Communication and Signal Processing. Nanking, China: IEEE Press, 2009: 1-5.
  • 2Baek S Y, Hong Y J, Sung D K. Adaptive transmission scheme for mixed multicast and unicast traffic in cellular systems [J] IEEE Transactions on Vehicular Technology, 2009, 58(6); 2 899-2 908.
  • 3LeeS J, Tcha Y J, Seo S Y, et al. Efficient use of multicast and unicast channels for multicast service transmission E J 1. IEEE Transactions on Communications, 2011, 59(5):1 264-1 267.
  • 4Tan C K, Chuah T C, Tan S.W. Adaptive multicast scheme for OFDMA-based multicast wireless systems[J]. Electronics Letters, 2011, 47(9): 570-572.
  • 5Zhao H V, Su W F. Cooperative wireless muhicast: Performance analysis and power/location optimization[J]. IEEE Transactions on Wireless Communications, 2010, 9(6): 2 088-2 100.
  • 6Alay O, Liu P, Guo Z L, et al. Cooperative layered video multicast using randomized distributed space time eodes[J]. IEEE Transactions on Multimedia, 2011, 13(5): 1 127-1 140.
  • 7Kim J S, Jin H, Sung D K et al. Optimization of wireless multicast systems employing Hybrid-ARO with chase combining[J]. IEEE Transactions on Vehicular Technology, 2010, 59(7) : 3 342-3 355.
  • 8Lu C C, Chung W C, Chang C J, et al. NACK-based retransmission schemes for MBMS over single frequency network in LTE[C]//Proceedings of the 6th International ICST Conference on Communications and Networking Harbin, China: IEEE Press, 2011: 284-288.
  • 9Cai Y, Lu S, Zhang L, Wang C Y, et al. Reduced feedback schemes for LTE MBMS[C]// Vehicular Technology Conference. Barcelona, Spain, 2009: 1-5.
  • 10Kwon H, Lee B G. Cooperative power allocation for broadcast/multicast services in cellular OFDM systems[J]. IEEE Transactions on Communications, 2009, 57(10): 3 092-3 102.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部