期刊文献+

基于结构化模型的电力系统元件逆系统控制方法 被引量:3

Inverse system control method for component of power systems based on structural model
下载PDF
导出
摘要 将非线性常微分方程系统的逆系统控制方法扩展到电力系统元件这样一类非线性微分-代数子系统.基于被控元件的指数1和关联可测特殊性,分2种情况研究了其逆系统控制方法.对于能够得到代数变量解析表达式的情况,可将非线性微分-代数子系统等价转化为关联可测的非线性常微分方程子系统;对于无法得到代数变量解析表达式的情况,可将非线性微分-代数子系统等价转化为关联可测的受限非线性常微分方程子系统.针对上述2种情况,均给出了物理可实现的控制器设计方案,实现了元件被控对象的线性化和解耦.最后按所提出的方法,设计了多机系统中的一台同步发电机组的励磁控制器. The inverse system control method of nonlinear ordinary differential equations (ODE) systems is expanded to power systems components which can be attributed to nonlinear differential-algebraic equations(DALE) systems model. Based on the particularities of the controlled components, i. e. , index one and measured interconnection, the inverse system control method was studied by dividing into two cases. For simple case that the analytic expression of the algebraic variable can be obtained, the nonlinear DAE subsystems can be equivalently transformed into nonlinear ODE subsystems with measurable interconnections. Otherwise the nonlinear DAE subsystems can be equivaleutly transformed into constrained nonlinear ODE subsystems with measurable interconnections. Physically feasible controller design scheme is proposed for above two cases, with which the linearization and decoupiing of controlled component are achieved. At last an excitation controller is designed for one synchronous generator within multi-machine power systems based on the control method proposed.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期299-303,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(50507002 60174004)
关键词 电力系统 元件 微分-代数系统 子系统 逆系统 power systems component differential-algebraic equations systems subsystems inverse system
  • 相关文献

参考文献11

二级参考文献72

共引文献105

同被引文献19

  • 1魏文辉,刘文华,宋强,袁志昌,倪镭,邹彬.基于逆系统方法有功—无功解耦PWM控制的链式STATCOM动态控制策略研究[J].中国电机工程学报,2005,25(3):23-28. 被引量:88
  • 2戴先中,张凯锋.复杂电力系统的接口概念与结构化模型[J].中国电机工程学报,2007,27(7):7-12. 被引量:15
  • 3张凯锋,戴先中,齐辉,赵大伟.复杂电力系统的元件结构化模型分析与应用[J].中国电机工程学报,2007,27(13):24-28. 被引量:12
  • 4S.L. CAMPBELL, N. NICHOLS, W. J. TERRELL. DUALITY.Observability and controllability for linear time- varying descriptor systems[J]. Circuits, Systems, Signal process, 1991,10(3):455 470.
  • 5D.J. HILL, I. M. Y. MAREELS. Stability theory for differential algebraic systems with application to power systems[J].IEEE Transactions on Circuits and Systems, 1990,37(11) : 1416-1423.
  • 6Q.ZANG,X.Z.DAI and K.F.ZHANG.Asymptotic stabilization for a class of nonlinear Differential-Algebraic sub-systems[J].Dynamics of Continuous Discrete and Impulsive Systems-Series A-Mathmatical Analysis, 2006, (13): 1434 1439.
  • 7ZANG QIANG and DAI XIANZHONG.Robust stabilization of uncertain nonlinear differential-algebraic subsystem using ANN with application to power systems[J]. Lecture Notes in Computer Science, 2007, (4493). 1138-1144.
  • 8KUNDUR P.Power system stability and control [M].New York : McGraw Hill,1994.
  • 9S L Campbell,N Nichols,W J Terrell Duality. Observability andcontrollability for linear time - varying descriptor systems [ J ]. Cir-cuits, Systems, Signal Process, 1991,10(3) : 455 -470.
  • 10D J Hill,I M Y Mareels. Stability theory for differential algebraicsystems with application to power systems[ J]. IEEE Trans on Cir-cuits and Systems, 1990, 37(11): 1416 - 1423.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部