摘要
简要介绍了数据开采的基本概念和地学意义,并运用人工神经网络中的前向多层反传学习算法(BP),在导师信号监督下对网络进行训练学习,分别用岩石化学成分和有利找矿标志作为导师知识引导知识发现,实现火成岩目标信息挖掘、模式识别分类和金矿找矿预测.
The basic concept of data mining and its geological meaning are expounded. Also introduced are a data mining method of back-propagation artificial neural network and its learning algorithm, and application to the KDD and gold deposit forecast. BP neural network consists of input, hidden and output layers. The details of the layers of the examples are: (1) input layers are the chemical composition of magmatite, and output layers, the discern parameters of rock character, their application to the KDD and rock classification; (2) input layers are the prospecting indicator of structures, beds, altered rocks and gold anomaly ( w (Au)>25×10 -9 ), while the output is mineralization prevailing level to optimization of gold exploration target. Both examples have achieved good result.
出处
《地球科学(中国地质大学学报)》
EI
CAS
CSCD
北大核心
1998年第2期183-187,共5页
Earth Science-Journal of China University of Geosciences
基金
地质矿产部矿产资源定量预测及勘查评价开放研究实验室基金
国家教委博士点基金