期刊文献+

一种自适应影响域半径无网格Galerkin法的应用研究 被引量:3

Application of element-free Galerkin method in consideration of self-adaptive radius of influential domain
下载PDF
导出
摘要 文章在背景积分网格积分方式的基础上,采用基于最小移动二乘近似的一种自适应影响域半径无网格Galerkin法,运用线弹性断裂力学理论,对有限板单边裂纹的应力强度因子进行了分析。由于该方法仅需节点信息,而不需要节点的连接信息,从而避免了有限元方法中的网格重构,大大简化了裂纹扩展的分析过程。数值计算结果表明了该方法的有效性。 An element-free Galerkin method (EFG) in consideration of the self-adaptive radius of the influential domain is presented based on the background finite element mesh used for quadrature. In the method, the radius of the influential domain is adjusted according to the density of nodes. By using the theory of linear elastic fracture mechanics, the stress intensity factors of finite plates with single edge crack are analyzed. Without the connectivity information of elements, the burdensome remesh- ing,which is used in the finite element method,is avoided in the present meshless method, and the a- nalysis of crack propagation is dramatically simplified. The examples reveal the effectiveness of the presented method.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期535-538,共4页 Journal of Hefei University of Technology:Natural Science
关键词 无网格GALERKIN法 自适应影响域半径 衍射法 应力强度因子 element-free Galerkin method(EFG) self-adaptive radius of influential domain diffraction method stress intensity factor
  • 相关文献

参考文献8

二级参考文献25

  • 1Li Chunyu,Int J Pressure Vessels Piping,1998年,75卷,6期,499页
  • 2Erdogan F,J Appl Mech,1997年,64卷,449页
  • 3沈成康,断裂力学,1996年
  • 4Lu Y Y,Computer Methods in Applied Mechanics and Engineering,1994年,113卷,397页
  • 5Belytschko T,Int J Numer Methods Eng,1994年,37卷,229页
  • 6Belytschko T,Int J Numer Method Eng,1994年,37卷,229页
  • 7Jian C,Mech Res Commun,2000年,27卷,301页
  • 8宋祖康,力学进展,2000年,30卷,1期,55页
  • 9Erdogan F,J Appl Mech,1997年,64卷,449页
  • 10He Jinzhi,ASME J Appl Mech,1994年,61卷,738页

共引文献42

同被引文献23

  • 1汤红卫,王卫东,赵艳荣.无网格伽辽金方法在线弹性断裂力学中的应用研究[J].机械强度,2005,27(1):108-111. 被引量:10
  • 2Liew KM, Cheng Y, Kitipomchai S. Boundary element-free method(BEFM) and its application to two-dimerrsion elasticity problems [J]. International Journal of Numerical Methods in Engineering 2006; 65(8) : 1310-32.
  • 3Pustejovsky MA. Fatigue crack propagation in titanium under general in - plane loading-I., experments. Engng Fracture Mech 1979,11: 9- 15.
  • 4Nayroles B, Touzot G, Villon P. Generaling the finite element method: Diffuse approximation and diffuse elements [J]. Computational Mechanics, 1992, 10:307 -318.
  • 5Belytschko T, Lu Y Y, Gu L. Element--free Galerkin methods [J]. Int J for Num Methods in Eng, 1994,37: 229-256.
  • 6Melenk J M, Babuska I. The partition of unity finite element method:Basis theory and application [J]. Compu. Methods Appli. Mech. Engrg, 1996, 139 (3): 289 -314.
  • 7Oden J T, Duarte C A M, Zienkiewicz O C. A Hp adaptive method using clouds [J]. Compu. Methods Appli. Mech. Engrg, 1998,153(3): 117-126.
  • 8Zhu T, Zhang J, Arluri S N, A meshless local boundary integral equation method for solving nonlinear problems [J]. Computational Mechanics, 1998,22 ( 3 ): 174 -186.
  • 9Atluri S N, Cho J Y, Kim H G. Analysis of thin beams, using the meshless local Petrov-Galerkin method,with generalized moving least squares interpolation[J]. Comput Mech, 1999,24 : 334-347.
  • 10Sukumar N, Moran B, Belytschko T, The natural element method in solid mechanics[J]. Int J for Num Methods in Eng, 1998,43(5) :839-887.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部