期刊文献+

捕食者具有阶段结构的食饵-捕食系统的研究 被引量:2

Study on a predator-prey system with stage-structure for predator
下载PDF
导出
摘要 文章讨论了一类捕食者具有阶段结构的非自治捕食者-食饵系统,运用Lyapunov函数方法,得到了该系统一致持续生存的条件;对于该模型的周期系统,在适当的条件下,存在唯一、全局渐近稳定的周期解。 This paper considers a kind of nonautonomous predator-prey system with stage-structure for predator. The sufficient conditions for guaranteeing the permanence of the system are obtained by the Lyapunov method. Then the existence, uniqueness and global asymptotic stability of the positive periodic solutions for corresponding periodic system are also discussed.
作者 何其慧
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期546-549,共4页 Journal of Hefei University of Technology:Natural Science
关键词 阶段结构 持续生存 周期解 全局渐进稳定 stage-structure permanent existence periodic solution global asymptotic stability
  • 相关文献

参考文献9

二级参考文献32

  • 1文贤章,王志成.多种群生态时滞系统正周期解的全局吸引性[J].数学物理学报(A辑),2004,24(6):641-653. 被引量:1
  • 2周桦,甘文珍,林支桂.一类具时滞和扩散的传染病模型[J].扬州大学学报(自然科学版),2005,8(2):4-7. 被引量:3
  • 3万阿英,林晓宁,蒋达清.Volterra积分微分方程周期正解的一个新的存在性理论[J].数学物理学报(A辑),2005,25(3):367-373. 被引量:7
  • 4He X Z.Stability and delays in a predator-prey system.J Math Anal Appl,1996,198:355-370.
  • 5Li Y K,Positive solution of a periodic delay predator-prey system.Proc of Amer Math Soc,1999,127(5):1331-1335.
  • 6Wang W,Chen L.A predator-prey system with stage-structure for predator.Comput Math Appl,1997,33(8):83-91.
  • 7Rosenzweig M L,Mac Arthur R.Graphical representation and stability conditions of predator-prey interactions.Amer Nat,1963,97:209-223.
  • 8Rosenzweig M L.Why the prey curve has a hump.Amer Nat,1969,103:81-87.
  • 9Rosenzweig M L.Paradox of enrichment:destabilization of exploitation system in ecological time.Science,1969,171:385 387.
  • 10Maynard Smith J.Models in Ecology.Cambridge:Cambridge Univ Press,1974.

共引文献113

同被引文献16

  • 1叶其孝,李正元.反应扩散方程引论[M].北京:科学出版社,2011.
  • 2Xu R,Ma Z E. Stability and Hopf bifurcation in a ratio-de-pendent predator-prey system with stage structure[ J]. Cha-os ,Solitons and Fractals,2008,38(3) :669 -684.
  • 3Xu R, Global stability and Hopf bifurcation of a predator-prey model with stage structure and delayed predator re-sponse [J]. Nonlinear Dyn,2012,67(2) ; 1683 - 1693.
  • 4Li F, Li H W. Hopf bifurcation of a predator-prey modelwith time delay and stage structure for the prey [ J ]. Math.Comput. Model,2012,55 (3/4) :672 -679.
  • 5Hassard B D,Kazarinoff N D,Wan Y H. Theory and Ap-plications of Hopf Bifurcation [ M ]. Cambridge: CambridgeUniversity Press, 1981.
  • 6Hwang T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2002,281 : 395- 401.
  • 7Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency[D]. J Animal Ecol, 1975,44(1) :331-340.
  • 8DeAngelis D L, Goldstein R A, O' neill R V. A model for trophic interaction[J ]. Ecology, 1975,56 (2) : 881 - 892.
  • 9Crandall M G, Rabinowitz P H. Bifurcation from simple ei- genvaluesl[J]. J Functional Analysis, 1971,8 (2) : 321-340.
  • 10Rabinowitz P H. Some global results for nonlinear eigen- value problems [J]. J Functional Analysis, 1971, 7 ( 3 ) : 487-513.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部